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Abstract. Given a polynomial P in several variables over an al-
gebraically closed field, we show that except in some special cases
that we fully describe, if one coefficient is allowed to vary, then the
polynomial is irreducible for all but at most deg(P )2 − 1 values
of the coefficient. We more generally handle the situation where
several specified coefficients vary.

1. Introduction

Classically polynomials in n > 2 variables are generically absolutely
irreducible: if the coefficients, in some algebraically closed ground field
K, are moved a little bit but stay away from some proper Zariski closed
subset, then the resulting polynomial is irreducible over K. This is
no longer true if only one specified coefficient is allowed to vary. For
example however one moves a non-zero coefficient of some homogeneous
polynomial P (x, y) ∈ K[x, y] of degree d > 2, it remains reducible over
K. Yet it seems that this case is exceptional and that most polynomials
are irreducible up to moving any fixed coefficient away from finitely
many values. This paper is aimed at making this more precise.

1.1. The problem. The problem can be posed in general as follows:
given an algebraically closed field K (of any characteristic) and a po-
lynomial P ∈ K[x] (with x = (x1, . . . , xn)), describe the “exceptional”
reducibility monomial sites of P , that is those sets {Q1, . . . , Q`} of
monomials in K[x] for which P + λ1Q1 + · · · + λ`Q` is generically re-

ducible, i.e. reducible in K(λ)[x]1, where λ = (λ1, . . . , λ`) is a `-tuple of
independent indeterminates. When this is not the case, it follows from
the Bertini-Noether theorem that the polynomial with shifted coeffi-
cients P+λ∗1Q1+· · ·+λ∗`Q` is irreducible inK[x] for all λ∗ = (λ∗1, . . . , λ

∗
`)

in a non-empty Zariski open subset of K` (and the converse is true).
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The situation ` = 1 has been extensively studied in the literature,
notably for Q1 = 1, that is when it is the constant term that is moved:
see works of Ruppert [Ru], Stein [St], Ploski [Pl], Cygan [Cy], Lorenzini
[Lo], Vistoli [Vi], Najib [Na], Bodin [Bo] et al. The central result in this
case, which is known as Stein’s theorem, is that P + λ is generically
irreducible if and only if P (x) is not a composed polynomial2 (some
say “indecomposable”); furthermore, the so-called spectrum of P con-
sisting of all λ∗ ∈ K such that P + λ∗ is reducible in K[x], which from
Bertini-Noether is finite in this case, is of cardinality < deg(P ). This
was first established by Stein in two variables and in characteristic 0,
then extended to all characteristics by Lorenzini and finally generalized
to n variables by Najib. The result also extends to arbitrary monomials
Q1, and in fact to arbitrary polynomials [Lo] [Bo]; the indecomposabil-
ity assumption should be replaced by the condition that P/Q1 is not a
composed rational function, and the bound deg(P ) by deg(P )2.

1.2. Our results. We fully describe the reducibility monomial sites of
polynomials in the general situation ` > 1 (theorem 3.3). We obtain
simple criteria for generic irreducibility, more practical than the previ-
ous indecomposability type conditions. These results can be combined
with some `-dimensional Stein-like description of the irreducibility set
(proposition 4.1). Our contribution can be illustrated by the following
three consequences.

Recall K is an algebraically closed field of any characteristic. Below
by Newton representation of a polynomial in n variables we merely
mean the subset of all points (a1, . . . , an) ∈ Nn such that the monomial
xa1

1 · · ·xan
n appears in the polynomial with a non-zero coefficient.

Theorem 1.1. Let P (x) ∈ K[x] be a non constant polynomial and
Q(x) be a monomial of degree 6 deg(P ) and relatively prime to P .
Assume that the monomials of P together with Q do not lie on a line
in their Newton representation3 and that Q is not a pure power4 in
K[x]. Then P +λQ is generically irreducible and the set of all λ∗ ∈ K
such that P+λ∗Q is reducible in K[x] is finite of cardinality < deg(P )2.

In particular a polynomial can always be made irreducible by chang-
ing only one of its coefficients provided it is not divisible by a non-
constant monomial.

2that is, is not of the form r(S(x)) with S ∈ K[x] and r ∈ K[t] with deg(r) > 2.
3The result also holds if P is a monomial (in which case P and Q are lined up

in the Newton representation).
4We say a polynomial R ∈ K[x] is a pure power if there exist S ∈ K[x] and

e > 1 such that R = Se. The monomial Q(x) = xe1
1 · · ·xen

n is not a pure power if
and only if e1, . . . , en are relatively prime.
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The assumption on the monomials of P and Q is here to avoid what
we call the exceptional homogeneous case, that is, that P be of the form
h(m1,m2) with h ∈ K[u, v] homogeneous and m1, m2 two monomials
of degree < deg(P ), in which case for any monomial Q = mk

1m
d−k
2

(0 6 k 6 d = deg(h)), P + λQ is generically reducible.
Pure power monomials Q, e.g. Q = 1, should also be excluded in

theorem 1.1, but can nevertherless be dealt with under a slightly more
general condition.

Theorem 1.2. Let P (x) ∈ K[x] be a non constant polynomial and
Q(x) be a monomial of degree 6 deg(P ) and relatively prime to P .
Assume P is not of the form h(m,ψ) with h ∈ K[u, v] an homoge-
neous polynomial, m a monomial dividing Q and ψ ∈ K[x] such that
deg(P ) > max(deg(m), deg(ψ)). Then P+λQ is generically irreducible
and the set of all λ∗ ∈ K such that P + λ∗Q is reducible in K[x] is
finite and of cardinality < deg(P )2.

If P is of the excluded form then, for Q = mdeg(h), the polynomial
P + λQ is generically reducible.

In the special case Q = 1, the assumption on P is that it is not
of the form h(1, ψ) with h ∈ K[u, v] homogeneous, degv(h) > 2 and
ψ ∈ K[x]: this corresponds to the classical hypothesis that P is not a
composed polynomial. Thus theorem 1.2 is a generalization of Stein’s
theorem (except for the bound which can be taken to be deg(P ) in this
special case).

As another typical consequence of our approach, we obtain that for
` > 2, reducibility monomials are even more rare.

Theorem 1.3. Let P ∈ K[x] be a non constant polynomial and, for
` > 2, Q1, . . . , Q` be ` monomials of degree 6 deg(P ) and such that
P,Q1, . . . , Q` are relatively prime. Assume the monomials of P together
with Q1, . . . , Q` do not lie on a line in their Newton representation. If
char(K) = p > 0 assume further that at least one of P,Q1, . . . , Q` is
not a p-th power. Then P +λ1Q1 + · · ·+λ`Q` is generically irreducible
and so P + λ∗1Q1 + · · ·+ λ∗`Q` is irreducible in K[x] for all (λ∗1, . . . , λ

∗
`)

in a non-empty Zariski open subset of K`.5

For example P (x1, . . . , xn) + λ1x1 + · · ·+ λnxn (n > 2) is generically
irreducible. See corollary 4.3 for further related results.

1.3. Organization of the paper. A starting ingredient of our method
is the Bertini-Krull theorem, which gives an iff condition for some po-
lynomial P + λ1Q1 + · · · + λ`Q` to be generically irreducible. The

5Prop. 4.1 gives a more explicit Stein-like description of the irreducibility set.
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Bertini-Krull theorem is recalled in the preliminary section 2 which
also introduces some basic definitions used in the rest of the paper. We
also seize the opportunity to prove a useful uniqueness result (theorem
2.7) in the Bertini-Krull theorem, which to our knowledge, was only
known in the context of Stein’s theorem.

Section 3 is the core of the paper. We investigate the Bertini-Krull
conclusion in the specific context of our problem to finally obtain a
general description of the reducibility monomial sites of a given poly-
nomial (theorem 3.3). Giving an exact description requires controlling
the possible overlaps of the special cases where reducibility monomial
sites can exist. This comes down to proving (as in lemma 3.7) some
uniqueness statements for “homogeneous decompositions” of polyno-
mials related to those studied in section 2.

Section 4 is devoted to specializing the variables λ1, . . . , λ`. For
` = 1, we use the generalization of Stein’s theorem due to Lorenzini
[Lo] and Bodin [Bo] to give an upper bound for the cardinality of the set
of exceptional values λ∗ making P + λ∗Q reducible in K[x]. A version
of this estimate can be derived inductively for the situation ` > 1, for
which the classical Bertini-Noether theorem can also be used. We then
complete the proof of the results from the introduction and give some
further corollaries.

1.4. Main Data and Notation. The following is given and will be
retained throughout the paper:

• an algebraically closed field K of characteristic 0 or p > 0,
• an integer ` > 0 and an `-tuple λ = (λ1, . . . , λ`) of independent

variables (algebraically independent over K); for ` = 0, the
convention is that no variable is given,

• an integer n > 2 and an n-tuple x = (x1, . . . , xn) of new inde-

pendent variables (algebraically independent over K(λ)),
• `+1 distinct (up to multiplicative constants) non-zero polynomi-

als P,Q1, . . . , Q` ∈ K[x] with max(deg(P ), . . . , deg(Q`)) > 0
and assumed further to be relatively prime if ` > 1,

• F (x, λ) = P (x)+λ1Q1(x)+· · ·+λ`Q`(x), which is an irreducible
polynomial in K[x, λ] if ` > 1. (For ` > 1, F (x, λ) can be alter-
natively defined as a linear form in (λ0, . . . , λ`) (with λ0 = 1)
with distinct non-zero and relatively prime coefficients in K[x]).

2. Around the Bertini-Krull theorem

2.1. Bertini-Krull theorem and homogeneous decompositions.
We start by recalling the Bertini-Krull theorem. We refer to [Sc, the-
orem 37] where equivalence between conditions (1) and (4) below is
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proved; equivalence between conditions (1), (2) and (3) is a special
case of the standard Bertini-Noether theorem [FrJa, proposition 8.8].

Theorem 2.1 (Bertini, Krull). In addition to §1.4, assume ` > 1.
Then the following conditions are equivalent:

(1) F (x, λ∗) is reducible in K[x] for all λ∗ ∈ K` such that
deg(F (x, λ∗)) = degx(F ).

(2) The set of λ∗ ∈ K` such that F (x, λ∗) is reducible in K[x] is
Zariski-dense.

(3) F (x, λ) is reducible in K(λ)[x].
(4) (a) either charK = p > 0 and F (x, λ) ∈ K[xp, λ], where xp =

(xp
1, . . . , x

p
n),

(b) or there exist φ, ψ ∈ K[x] with degx(F ) > max(deg(φ), deg(ψ))
satisfying the following:
(*) there is an integer d > 1 6 and ` + 1 polynomials
hi(u, v) ∈ K[u, v] homogeneous of degree d such that
P (x) = h0(φ(x), ψ(x)) =

∑d
k=0 a0kφ(x)kψ(x)d−k

Q1(x) = h1(φ(x), ψ(x)) = . . .
...

Q`(x) = h`(φ(x), ψ(x)) =
∑d

k=0 a`kφ(x)kψ(x)d−k

which, setting H(u, v, λ) = h0(u, v)+
∑`

i=1 λihi(u, v), equiv-
alently rewrites

F (x, λ) = H(φ(x), ψ(x), λ).

Remark 2.2. (1) In (4a), it follows from F (x, λ) ∈ K[xp, λ] that
P,Q1, . . . , Q` are in K[xp

1, . . . , x
p
n]; as K is algebraically closed

they are also p-th powers in K[x].
(2) It follows from the assumption “P,Q1, . . . , Q` relatively prime”

that the same is true for φ and ψ in (4b).

The end of this section is devoted to the study of the decomposition
F (x, λ) = H(φ(x), ψ(x), λ) in (4b) (*) and particularly to the unique-
ness of such a decomposition.

Definition 2.3. Given two polynomials φ, ψ ∈ K[x] relatively prime and
such that degx(F ) > max(deg(φ), deg(ψ)),

(1) the polynomial F is said to be (φ, ψ)-homogeneously composed

(in degree d) if there existsH(u, v, λ) ∈ K(λ)[u, v] homogeneous
(of degree d) in (u, v) such that F (x, λ) = H(φ(x), ψ(x), λ).

6This condition is actually a consequence of degx(F ) > max(deg(φ),deg(ψ)).
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The identity F (x, λ) = H(φ(x), ψ(x), λ) is then called a (φ, ψ)-
homogeneous decomposition of F . This definition is motivated
by condition (4b) (*) of Bertini-Krull theorem.

(2) A (φ, ψ)-homogeneous decomposition F (x, λ) = H(φ(x), ψ(x), λ)

is said to be maximal if φ+ λψ is irreducible in K(λ)[x] 7.

Remark 2.4. (1) We also include in this definition the case ` = 0
for which only the polynomial P is given. In this situation,
the classical notion of composed polynomial corresponds to the
special case of the “(φ, ψ)-homogeneously composed” property
for which φ or ψ is constant.

(2) For ` > 1 we will show that the maximality condition is equiv-
alent (except in some special case) to the maximality of the
degree of the homogeneous polynomial H, whence the termi-
nology. See theorem 2.7 and corollary 2.9.

(3) From the Bertini-Krull theorem, “φ+λψ irreducible inK(λ)[x]”
is equivalent to “φ + λ∗ψ irreducible in K[x] for at least one
λ∗ ∈ K with deg(φ+ λ∗ψ) = max(deg(φ), deg(ψ))” and also to
“φ+ λ∗ψ irreducible in K[x] for all but finitely many λ∗ ∈ K”.

The polynomial F (x, y, λ) = x4 − λy4 admits the (x2, y2)-homo-
geneous decomposition F (x, y, λ) = H1(x

2, y2, λ) with H1(u, v, λ) =

u2 − λv2. It is not maximal as x2 − λy2 = (x−
√
λy)(x+

√
λy). This

decomposition however can be refined to a (x, y)-homogeneous decom-
position, which is maximal: namely we have F (x, y, λ) = H2(x, y, λ)
with H2(u, v, λ) = u4− λv4. This refinement is in fact always possible.

Proposition 2.5. Assume F (x, λ) is (φ0, ψ0)-homogeneously composed
in degree d0. Then there exists a maximal (φ, ψ)-homogeneous decom-
position of F of degree d > d0 and which is of degree d > d0 if the
initial decomposition is not maximal.

Proof. Let F (x, λ) = H0(φ0(x), ψ0(x), λ) be a (φ0, ψ0)-homogeneous

decomposition in degree d0. If φ0+λψ0 is irreducible inK(λ)[x] then we
are done. Otherwise apply the Bertini-Krull theorem to the polynomial
φ0+λψ0 (note that it is irreducible inK[λ][x] as φ0 and ψ0 are relatively
prime) to conclude that there exist φ1, ψ1 ∈ K[x] relatively prime and
with max(deg(φ0), deg(ψ0)) > max(deg(φ1), deg(ψ1)) such that φ0 +
λψ0 is (φ1, ψ1)-homogeneously composed in degree d1 > 2. Note that
this conclusion also covers the extra possibility (4a) of theorem 2.1
in characteristic p > 0, which is here that φ0 + λψ0 writes φp

1 + λψp
1

for some φ1, ψ1 ∈ K[x]. Straightforward calculations on homogeneous

7where λ is a new single variable (to be distinguished from the tuple λ).
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polynomials prove that F is then (φ1, ψ1)-homogeneously composed in
degree d0d1 > d0. We can iterate this process, which must stop because
at each step the degree increases but remains 6 degx(F ). The last step
yields a final homogeneous decomposition of F which is maximal. �

2.2. Uniqueness of Bertini-Krull homogeneous decompositions.
Theorem 2.7, which can be viewed as a uniqueness result for the Bertini-
Krull theorem, is the main result of this section. In this subsection, we
assume ` > 1.

We need a preliminary adjustment of definition 2.3. Given a (φ, ψ)-
homogeneous decomposition F (x, λ) = H(φ, ψ, λ), assume there exists
(α, β) 6= (0, 0) in K2 such that αφ + βψ is constant in x (that is, is
in K). Then multiplying H(u, v, λ) by any power (αu + βv)e yields
another decomposition F (x, λ) = H̃(φ(x), ψ(x), λ) as above with H̃

homogeneous (in u, v) of degree d̃ = d + e. Conversely if H(u, v, λ)

has linear factors αu+ βv (in K(λ)[u, v]) with αφ+ βψ constant in x,

then they are all equal, up to some constant in K(λ), to a same linear
form α0u+ β0v ∈ K[u, v] and the homogeneous polynomial H ′(u, v, λ)
obtained fromH(u, v, λ) by dividing by all possible such factors αu+βv
still induces a decomposition F (x, λ) = H ′(φ(x), ψ(x), λ) as above with
H ′ homogeneous of degree d′ 6 d. Note we still have d′ > 2 as d′ 6 1
contradicts degx(F ) > max(deg(φ), deg(ψ)).

Definition 2.6. Given two polynomials φ, ψ ∈ K[x] relatively prime
with degx(F ) > max(deg(φ), deg(ψ)), a (φ, ψ)-homogeneous decompo-
sition F = H(φ, ψ, λ) is said to be reduced if the polynomial H has no
linear factor αu+ βv ∈ K[u, v] such that αφ+ βψ is constant in x.

From above a reduced (φ, ψ)-homogeneous decomposition of F is
easily obtained from any (φ, ψ)-homogeneous decomposition of F .

Also note that if there exists (α, β) 6= (0, 0) inK2 such that αφ+βψ is
constant, then up to applying some linear transformation L ∈ GL2(K)
to (φ, ψ), one may assume φ = 1 and so this can only happen if F

is a composed polynomial (over K(λ)). Thus only in this case does
definition 2.6 add something to definition 2.3.

Theorem 2.7. Assume ` > 1. If F (x, λ) = P (x) + λ1Q1(x) + · · · +
λ`Q`(x) admits two maximal homogeneous decompositions:

F (x, λ) = H1(φ1(x), ψ1(x), λ) = H2(φ2(x), ψ2(x), λ)

then there exists L ∈ GL2(K) such that (φ1, ψ1) = L(φ2, ψ2). Further-
more if the two decompositions are reduced then we have c·H2(u, v, λ) =
H1(u, v, λ) ◦ L(u, v) for some constant c ∈ K.
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Example 2.8. Theorem 2.7 does not extend to the case ` = 0. Here is
a counter-example. Let P (x, y) = y(x+ y)(y2 + xy− 2x). We have the
two maximal homogeneous decompositions:
- P = h1(φ1, ψ1) with h1(u, v) = v2−u2, φ1 = x, ψ1 = (y−1)(x+y)+y,
- P = h2(φ2, ψ2) with h2(u, v) = uv, φ2 = y, ψ2 = (x+y)(y2 +xy−2x).
These two decompositions are distinct even up to elements of GL2(K).

Corollary 2.9. All reduced maximal homogeneous decompositions of F
are of the same degree, say δ. Furthermore if F is not a composed po-
lynomial over K(λ), any homogeneous decomposition of F is of degree
6 δ and equality holds if and only if it is maximal.

Proof of theorem 2.7. Consider a reduced maximal homogeneous de-
composition F (x, λ) = H(φ(x), ψ(x), λ). Write the homogeneous poly-

nomial H(u, v, λ) (in u, v) as a product
∏d

i=1(αi(λ)u+βi(λ)v) of linear

forms in u, v with coefficients in K(λ). Thus we have

P (x) +
∑̀
i=1

λiQi(x) =
d∏

k=1

(αk(λ)φ(x) + βk(λ)ψ(x)).

The result will be easily deduced from these two claims and the unique
factorization property in the domain K(λ)[x].

(a) There are at least two factors αk(λ)φ(x) + βk(λ)ψ(x) that are
non constant in x and non proportional (by some constant in

K(λ)).
(b) All factors αk(λ)φ(x)+βk(λ)ψ(x) (k = 1, . . . , d) are irreducible

in K(λ)[x] and are not in K[x] (even up to constants in K(λ)).

Proof of claim (a). First note that due to definition 2.6, no factor

αkφ+βkψ is in K(λ). Assume (a) does not hold. Then F (x, λ) is of the

form αMd with α ∈ K(λ) and M = α1φ+ β1ψ. Taking the derivative

with respect to λi shows that Md−1 divides Qi in K(λ)[x], i = 1, . . . , `.
But as Md divides F (x, λ), we obtain that Md−1 divides P as well.
A contradiction as deg(M) > 0 and P,Q1, . . . , Q` are assumed to be
relatively prime.

Proof of claim (b). Assume that for some k ∈ {1, . . . , d}, αkφ+ βkψ

is reducible in K(λ)[x]. One may assume that deg(ψ) > 0 and βk 6= 0.
If αk 6= 0, set µ(λ) = βk(λ)/αk(λ). The polynomial φ(x) + µ(λ)ψ(x) is

reducible in K(λ)[x] and consequently so are the polynomials φ(x) +
µ(λ∗)ψ(x) for all specializations λ → λ∗ in K` except possibly in a
proper Zariski closed subset. It follows then from the Bertini-Krull
theorem and the irreducibility of φ+λψ in K(λ)[x] that µ(λ) has only
finitely many specializations in K and so necessarily µ(λ) = µ ∈ K.
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Then set a(x) = φ(x) + µψ(x). In the case that αk = 0, set a(x) =
ψ(x). In all cases, a(x) ∈ K[x] \K and F (x, λ) = a(x)Gλ(x) for some

Gλ(x) ∈ K(λ)[x]. We now show that this leads to a contradiction.
Namely for each i = 1, . . . , `

∂Gλ

∂λi

=
1

a

∂F

∂λi

=
Qi

a

lies both in K(x) and in K(λ)[x], and so is in K[x]. Thus a divides Qi

in K[x], i = 1, . . . , `. But as a divides P +
∑`

i=1 λiQi, a divides P as

well (both in K(λ)[x]): a contradiction as deg(a) > 0 and P,Q1, . . . , Q`

are relatively prime.
It follows from claims (a) and (b) that if the two maximal homogene-

ous decompositions given in the statement of theorem 2.7 are reduced,
then we have (φ1, ψ1) = Lλ(φ2, ψ2) for some Lλ ∈ GL2(K(λ)). Now
for all λ∗ ∈ K` but in a proper Zariski closed subset we also have
(φ1, ψ1) = Lλ∗(φ2, ψ2) with Lλ∗ ∈ GL2(K).

It also follows from claims (a) and (b) that the set of linear fac-
tors αk(λ)u + βk(λ)v of the polynomial H(u, v, λ) is uniquely deter-
mined (up to non zero constants) by the set of irreducible factors
αk(λ)φ(x)+βk(λ)ψ(x) of F (x, λ). This yields the additional conclusion
c ·H2(u, v, λ) = H1(u, v, λ) ◦ Lλ∗(u, v) of theorem 2.7.

Finally if the two given maximal homogeneous decompositions of F
are not reduced, consider the two associated reduced decompositions
F = H ′

1(φ1, ψ1, λ) = H ′
2(φ2, ψ2, λ) (constructed prior to definition 2.6).

The proof above still yields (φ1, ψ1) = Lλ∗(φ2, ψ2) for some Lλ∗ ∈
GL2(K). �

2.3. Further comments. Retain the notation from the above proof.

2.3.1. As a consequence of the factors αk(λ)φ(x)+βk(λ)ψ(x) not being

in K[x] even up to constants in K(λ) we have αk(λ)βk(λ) 6= 0 and
degx(αkφ+ βkψ) = max(deg(φ), deg(ψ)), k = 1, . . . , d.

2.3.2. From the Bertini-Noether theorem [FrJa, proposition 8.8], for
all λ∗ ∈ K` but in a proper Zariski closed subset Z, the polynomials
αk(λ

∗)φ(x) + βk(λ
∗)ψ(x), obtained by specializing λ to λ∗ in the irre-

ducible factors αk(λ)φ(x) + βk(λ)ψ(x) of F (x, λ), are the irreducible
factors of F (x, λ∗) in K[x].

2.3.3. The vector space K(λ)φ+K(λ)ψ, which is uniquely determined

by F (x, λ), is the K(λ)-vector space generated by all irreducible di-

visors of F (x, λ) in K(λ)[x]. As to the K-vector space Kφ + Kψ, it
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is the vector space generated by all irreducible divisors in K[x] of the
polynomials F (x, λ∗) with λ∗ /∈ Z (where Z is defined just above).

2.3.4. Consider the problem, given a polynomial P as above, of finding
all the sets {Q1, . . . , Q`} of polynomials as above (with ` > 1), such

that P + λ1Q1 + · · ·+ λ`Q` is reducible in K(λ)[x]. This problem will
be studied in the next section in the special situation Q1, . . . , Q` are
monomials. We note here that the general problem can be reduced to
the special case ` = 1.

Indeed, if {Q1, . . . , Q`} is a solution to this problem, then, for some
integer d > 2, the polynomials P,Q1, . . . , Q` all are in the d-th sym-
metric power (Kφ + Kψ)d of some vector space Kφ + Kψ ⊂ K[x] 8

which from theorem 2.7 is uniquely determined by P,Q1, . . . , Q`. Now
there exists Q ∈ (Kφ + Kψ)d that is relatively prime to P . Clearly

P + λQ is reducible in K(λ)[x], that is, the singleton {Q} is a solu-
tion to the problem with ` = 1. The vector space Kφ + Kψ is also
uniquely determined by P and Q. Thus finding all solutions Q to the
problem with ` = 1 provides all possible solutions {Q1, . . . , Q`} to the
general problem: these sets are all possible finite subsets of the sets
(Kφ+Kψ)d attached to the solutions Q.

For self-containedness of next section, we will not use this remark
there. We just state this other related consequence of theorem 2.7.

Corollary 2.10. Suppose given two maximal homogeneous decomposi-
tions P (x) + λ1Q1(x) + · · · + λ`Q`(x) = H(φ(x), ψ(x), λ) and P (x) +
λ′1Q

′
1(x)+ · · ·+λ′`′Q′

`′(x) = H ′(φ′(x), ψ′(x), λ′) (with `, `′ > 1). Assume
further that Q1 = Q′

1 and that P and Q1 are relatively prime. Then we
have (φ′, ψ′) = L(φ, ψ) for some L ∈ GL2(K).

3. Reducibility monomial sites

We keep the notation of section 2 but assume in addition that ` > 1
and that Q1, . . . , Q` are monomials such that deg(Qi) 6 deg(P ), i =
1, . . . , `. We set Qi = xei1

1 · · ·xein
n , i = 1, . . . , `.

Definition 3.1. The set {Q1, . . . , Q`} is said to be a reducibility mono-

mial site of P is F (x, λ) = P+λ1Q1+· · ·+λ`Q` is reducible in K(λ)[x].
If ` = 1 we just say Q1 is a reducibility monomial.

It is readily checked that any subset of a reducibility monomial site
is a reducibility monomial site.

8This is another way of saying that each of these polynomials can be written
h(φ, ψ) with h ∈ K[u, v] homogeneous of degree d.
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Definition 3.2. A polynomial P ∈ K[x] is said to be homogeneous
in two monomials if P is (m1,m2)-homogeneously composed for some
monomials m1 and m2 (which according to definition 2.3 should be
relatively prime and such that deg(P ) > max(deg(m1), deg(m2))).

This property can be easily detected thanks to the Newton rep-
resentation of P (as already used in the introduction). Indeed, set
m1 = xa1

1 · · ·xan
n and m2 = xb1

1 · · ·xbn
n . If P is homogeneous in m1 and

m2, then P is a sum of monomials of the form:

mk
1m

d−k
2 = x

db1+k(a1−b1)
1 · · ·xdbn+k(an−bn)

n (k ∈ {0, . . . , d})
The corresponding points Mk = (db1 +k(a1− b1), . . . , dbn +k(an− bn))
(k = 0, . . . , d) lie on a straight line in Qn.9

We will show below (theorem 3.3 (addendum 1)) that a (m1,m2)-
homogeneous decomposition of P is maximal, that is m1 + λm2 is
irreducible in K(λ)[x] if and only if m1 and m2 are not d-th powers
in K[x] for some integer d > 1, or, equivalently, if a1, . . . , an, b1, . . . , bn
are relatively prime.

3.1. Main theorem. Our main result determines the reducibility mono-
mial sites of a polynomial. We first state it in the general situation of
a polynomial that is neither a monomial nor a pure power. The two
remaining special cases are dealt with in two addenda. The proof is
given in section 3.5.

Theorem 3.3 (general case). Assume P (x) is not a monomial and is
not a pure power in K[x].

(1) If P is homogeneous in two monomials, then given a maximal
(m1,m2)-homogeneous decomposition P = h(m1,m2) of degree
δ with m1 and m2 monomials10, the reducibility monomial sites
of P are all sets of monomials mk

1m
δ−k
2 , 0 6 k 6 δ, of degree

6 deg(P ).

(2) If P is not homogeneous in two monomials then the only possible
reducibility monomial sites are singletons (` = 1) of the form
{md} with m a monomial relatively prime to P and d > 2.

9Note however that the monomials being lined up in the Newton representation
is not sufficient for P to be homogeneous in two monomials: for example P =
xy + x2y4 + x3y6 has that property but is not homogeneous in two monomials. It
is of course easy to give a full test for some polynomial P to be homogeneous in
terms of its Newton representation but writing out the exact condition is not very
enlightening. See also remark 3.8.

10Such a decomposition exists (proposition 2.5) and is unique up to trivial trans-
formations (lemma 3.7).



12 ARNAUD BODIN, PIERRE DÈBES, AND SALAH NAJIB

Furthermore the following should hold: P = h(m,ψ) with h ∈
K[u, v] homogeneous of degree d, ψ ∈ K[x] non monomial and
deg(P ) > max(deg(m), deg(ψ))11.

Remark 3.4. (1) In the homogeneous case (1), the reducibility mono-
mials mk

1m
δ−k
2 also are on the line formed by the monomials of

P in its Newton representation.
(2) In case (2) we do not know whether there may be several re-

ducibility monomials of the form md. This is related to the pos-
sibility that P can be written P = h(m,ψ) as in the statement
in several different ways, and so to the uniqueness of homoge-
neous decompositions of P . In section 2.2 where this problem
is studied for the polynomial P +λ1Q1 + · · ·+λ`Q` with ` > 1,
we give a counter-example to uniqueness for ` = 0 (example
2.8). However the two monomials md associated to the two
homogeneous decompositions of P shown there are x2 and y2;
the second one is not relatively prime to P and so is not a
reducibility monomial according to our definitions.

(3) In case (2) where P = h(m,ψ), by setting g(t) = h(1, t) we ob-
tain P/md = g(ψ/m) is a composite rational function as consid-
ered in [Bo] (of special form though as g is here a polynomial).

3.2. The monomial case. Here we consider the case P is a monomial
γ xe1

1 · · ·xen
n (with γ ∈ K, γ 6= 0). The argument below can be viewed

as an easy special case of the general method.
From §2, if F (x, λ) is reducible in K(λ)[x], then equivalently ei-

ther F (x, λ) ∈ K[xp, λ] (with char(K) = p > 0) or F (x, λ) is (φ, ψ)-
homogeneously composed in degree d for some (φ, ψ) ∈ K[x]. In the
latter case, factor the homogeneous polynomials involved in the decom-
position as products of linear forms to obtain{

P (x) =
∏µ0

k=1(α0kφ(x) + β0kψ(x))r0k

Qi(x) =
∏µi

k=1(αikφ(x) + βikψ(x))rik (i = 1, . . . , `)

where the (αik, βik) are non-zero, pairwise non proportional and the
integers rik are > 0 and satisfy

∑µi

k=1 rik = d (i = 0, . . . , `).
All the factors appearing in the right-hand side terms are neces-

sarily monomials and at least two of them are non proportional (as
P,Q1, . . . , Q` are relatively prime). Therefore up to changing (φ, ψ) to
L(φ, ψ) for some L ∈ GL2(K) one may assume that φ and ψ themselves
are two monomials m1 and m2. Taking into account that P,Q1, . . . , Q`

11By proposition 2.5 we may also impose that ψ + λm is irreducible in K(λ)[x].
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are monomials and that they are relatively prime, we obtain the fol-
lowing characterization (the converse is clear).

Theorem 3.3 (addendum 1). If P is a monomial the following are
equivalent:

(1) The polynomial P + λ1Q1 + · · · + λ`Q` is reducible in K(λ)[x]
(that is, {Q1, . . . , Q`} is a reducibility monomial site of P ),

(2) (a) either charK = p > 0 and P,Q1, . . . , Q` ∈ K[xp],
(b) or P,Q1, . . . , Q` are of the form mk

1m
d−k
2 (0 6 k 6 d)

for some relatively prime monomials m1 and m2 and some
integer d > 1, and they include md

1 and md
2.

Furthermore, for all (φ, ψ)-homogeneous decompositions of
P +λ1Q1 + · · ·+λ`Q`, (φ, ψ) is a couple of monomials, up
to some element L ∈ GL2(K).

Remark 3.5. In general there may be several couples (m1,m2) such
that P is of the form mk

1m
d−k
2 , and so several corresponding reducibility

sites for P . For example P = x3y2 is homogeneously composed for both
couples of monomials (x3, y2) and (x3y2, 1) and both decompositions
are maximal. In the non monomial case, this will not happen: up to
trivial transformations the couple (m1,m2) is uniquely determined by
P (see lemma 3.7).

3.3. Pure power case. In the case P is a pure power in K[x], the
three following possibilities can occur:

(1) P is homogeneous in two monomials. In this case let P =
h(m1,m2) be a maximal homogeneous decomposition of degree
δ in two monomials m1 and m2 and set M1 = {mk

1m
δ−k
2 | 0 6

k 6 δ}. All subsets of M1 are reducible monomial sites.
(2) P admits a maximal (m,ψ)-homogeneous decomposition in de-

gree d, with m a monomial and ψ ∈ K[x] non monomial. In this
case, if deg(md) 6 deg(P ), then md is a reducibility monomial.

(3) char(K) = p > 0 and P ∈ K[xp]. In this case set M3 = {mp |
m is a monomial and deg(mp) 6 deg(P )}. All subsets of M3

are reducible monomial sites.

Theorem 3.3 (addendum 2). Assume P is a pure power but is not
a monomial. Then the reducibility monomial sites of P are those de-
scribed in possibilities (1), (2) and (3).

The following observations make the pure power case rather special:

(a) possibility (2) is always satisfied: indeed by assumption we have
P = Se for some S ∈ K[x] and some integer e > 1, which is a (m,S)-
homogeneous decomposition of degree e for any monomial m relatively
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prime to S; the corresponding monomials me with deg(me) 6 deg(P )
are reducibility monomials. However there may be other kinds of de-
compositions P = h(m,ψ). For example, take P (x, y) = (2y3−x4)2x4.
Squares monomials of degree 6 12 are reducibility monomials. Now
for m = y3, ψ = y3 − x4 and h(u, v) = (u + v)2(u − v), we also have
P = h(m,ψ) and so m3 = y9 is another reducibility monomial of P .

(b) possibilities (1), (2) and (3) can occur simultaneously. Take for
example P (x, y) = (x2−y3)3. Then P is homogeneous in the two mono-
mials x2 and y3; the corresponding setM1 isM1 = {x6, x4y3, x2y6, y9}.
As P is a third power, each of the monomials 1, x3, y3, x6, x3y3, y6,
x9, x6y3, x3y6, y9 is a reducibility monomial. Finally if char(K) = 3,
then every subset of M3 = {1, x3, y3, x6, x3y3, y6, x9, x6y3, x3y6, y9} is a
reducibility monomial site.

3.4. Lemmas. The two following lemmas will be used in the proof of
theorem 3.3.

Lemma 3.6. Given two monomials m1,m2 ∈ K[x] such that we have
max(deg(m1), deg(m2)) > 0, the following are equivalent:

(i) there exists λ∗ ∈ K, λ∗ 6= 0, such that m1 + λ∗m2 is irreducible
in K[x],

(ii) for all λ∗ ∈ K, λ∗ 6= 0, m1 + λ∗m2 is irreducible in K[x],

(iii) m1 + λm2 is irreducible in K(λ)[x].

Proof. The equivalence (iii)⇔(i) is a special case of the Bertini-Krull
theorem and (ii)⇒(i) is trivial. We are left with proving (i)⇒(ii).
Assume there exist λ∗1, λ

∗
2 ∈ K, both non zero and such that m1 +λ∗1m2

is reducible and m1 + λ∗2m2 is irreducible in K[x].
Set m1 = xa1

1 · · ·xan
n and m2 = xb1

1 · · ·xbn
n . One may assume that

deg(m2) > 0 and so for example b1 > 0. If a1 > 0 then x1 divides
m1 + λ∗2m2 and so m1 = m2 = x1 (up to some non-zero multiplicative
constants) in which case the result is obvious. Thus one may assume
a1 = 0. If m1(x) + λ∗1m2(x) = R(x) · S(x) is a non trivial factorization
of m1 + λ∗1m2 (deg(R), deg(S) > 0), we have

m1+λ
∗
2m2 = R

(
(λ∗1

−1λ∗2)
1
b1 x1, x2, . . . , xn

)
·S

(
(λ∗1

−1λ∗2)
1
b1 x1, x2, . . . , xn

)
which contradicts the irreducibility of m1 + λ∗2m2. �

Lemma 3.7. Assume P (x) is not a monomial and is given with a max-
imal (m1,m2)-homogeneous decomposition P = h(m1,m2) of degree d
with m1 and m2 monomials.

(1) If P = h′(m′
1,m

′
2) is another maximal homogeneous decompo-

sition of degree d′ of P in monomials m′
1 and m′

2, then either
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(m1 = am′
1 and m2 = bm′

2) or (m1 = am′
2 and m2 = bm′

1), for
some non-zero constants a, b ∈ K, and d = d′.

(2) There is no maximal homogeneous (m,ψ)-decomposition of P =
h′(m,ψ) with ψ ∈ K[x] non monomial and m a monomial rel-
atively prime to P and not a monomial of ψ unless P = ψd′′

with ψ homogeneous in m1 and m2 and d′′ > 2.

Proof. We can write

(∗∗) P = h(m1,m2) =

µ∏
k=1

(αkm1 + βkm2)
rk

where the (αk, βk) are non-zero and pairwise non-proportional and the
integers rk are > 0 and satisfy

∑µ
k=1 rk = d.

(1) As P is not a monomial there exists k ∈ {1, . . . , µ} such that
αkβk 6= 0. Then by lemma 3.6 αkm1 + βkm2 is irreducible in K[x].

Assume P has another maximal homogeneous decomposition in mono-
mials m′

1 and m′
2

P = h′(m′
1,m

′
2) =

µ′∏
k=1

(α′
km

′
1 + β′km

′
2)

r′k

where the (α′
k, β

′
k) are non-zero, pairwise non proportional and the

integers r′k are > 0 and satisfy
∑µ′

k=1 r
′
k > 1. From the unique factor-

ization property in the domain K[x], there exists h ∈ {1, . . . , µ′} with
α′

hβ
′
h 6= 0 such that, up to a non-zero multiplicative constant, we have

αkm1 + βkm2 = α′
hm

′
1 + β′hm

′
2. As m1,m2,m

′
1,m

′
2 are monomials we

obtain the desired conclusion.

Remark 3.8. In fact the monomials m1 and m2 of some maximal ho-
mogeneous decomposition of P can be easily recovered from the New-
ton representation of P . Indeed, using the notation from the begin-
ning of section 3, for any two distinct points Mh and Mk, we have−−−−→
MkMh = (k−h)

−→
∆ where

−→
∆ = (a1−b1, . . . , an−bn). As min(aj, bj) = 0,

j = 1, . . . , `, the non-zero exponents of m1 (resp. of m2) correspond to

the positive components (resp. to the negative components) of
−→
∆. As

a1, . . . , an, b1, . . . , bn are relatively prime, these exponents correspond

to the components of
−−−−→
MkMh divided by their g.c.d.

(2) Suppose P has a maximal (m,ψ)-homogeneous decomposition
(with m and ψ as in the statement)
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P = h′(m,ψ) =

µ′∏
k=1

(α′
kψ + β′km)r′k

where the (α′
k, β

′
k) are non-zero and pairwise non-proportional and the

integers r′k are > 0 and satisfy
∑µ′

k=1 r
′
k = d′ > 1.

Consider first the case there exists h ∈ {1, . . . , µ′} with α′
hβ

′
h 6= 0.

Comparing with (∗∗) above we obtain that the polynomial α′
hψ+ β′hm

is a product of say ν irreducible factors αkm1 + βkm2 with αkβk 6= 0
(irreducible by lemma 3.6) and possibly some monomial ρ. As α′

hψ +
β′hm has at least 3 monomials, the integer ν is > 2. Thus α′

hψ+β′hm can
be written ρ κ(m1,m2) with κ ∈ K[u, v] homogeneous of degree ν > 2.
As m is not a monomial of ψ, conclude that, up to non zero constants
in K, m is one of the monomials of κ(m1,m2) multiplied by ρ and that
ψ is the sum of the other monomials of κ(m1,m2), also multiplied by
ρ. Now as ψ and m are relatively prime, ρ is a non-zero constant in
K. But then m + λψ is (m1,m2)-homogeneously composed in degree
ν, which contradicts the maximality of the (m,ψ)-decomposition.

Assume next that α′
hβ

′
h = 0 for all h = 1, . . . , µ′. If no coefficient α′

h

is zero, then P = ψd′ (up to some non-zero multiplicative constant).
If some coefficient α′

h is zero, then m divides P and as P and m are
assumed to be relatively prime, m is a non-zero constant in K. Con-
clude in both cases that P = ψd′′ (up to some non-zero multiplicative
constant) where d′′ is the number of coefficients α′

h that are non-zero
(counted with the multiplicities r′k); we have d′′ 6 d′ and d′′ > 2 for
otherwise we would have deg(P ) 6 max(deg(ψ), deg(m)). Observe
next that the exponents rk are all divisible by d′′: if αkβk 6= 0, this is
because αkm1 + βkm2 is irreducible in K[x] and for the possible two
factors that are powers of m1 and m2, because m1 and m2 are rela-
tively prime. Conclude that ψ is as announced homogeneous in m1

and m2. �

3.5. Proof of theorem 3.3. Addendum 1 has already been proved
(in section 3.2) so we may assume P is not a monomial.

3.5.1. Preliminary discussion: Let {Q1, . . . , Q`} (` > 1) be a reducibil-
ity monomial site of P .

From remark 2.2 the case (4a) in the Bertini-Krull theorem can only
occur if P is a pure power, and in this case the conclusion corresponds
to possibility (3) of theorem 3.3 (addendum 2).
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Suppose now it is part (4b) of the Bertini-Krull theorem that holds.
That is, the polynomial F (x, λ) = P + λ1Q1 + · · ·+ λ`Q` has a (φ, ψ)-
homogeneous decomposition in degree d for some φ, ψ ∈ K[x], which
in addition we may and will assume to be maximal (proposition 2.5).

Thus we have P (x) = h0(φ(x), ψ(x)) and Qi(x) = hi(φ(x), ψ(x))
(i = 1, . . . , `) for some homogeneous polynomials h0, . . . , h` ∈ K[u, v]
of degree d. Note that as deg(P ) > deg(Qi), i = 1, . . . , `, we have
degx(F ) = deg(P ) > max(deg(φ), deg(ψ)) and so P = h0(φ, ψ) is
still a (φ, ψ)-homogeneous decomposition of P . Write then hi(u, v) =∏µi

k=1(αiku+ βikv)
rik with, for each i = 0, . . . , `, the (αik, βik) non-zero

and pairwise non proportional and the integers rik > 0 and satisfying∑µi

k=1 rik = d. Unless ` = 1 and Q1 is constant, one may assume Q1

is a non constant monomial and then all factors α1kφ(x) + β1kψ(x)
(k = 1, . . . , µ1) are monomials and at least one, say m, is non constant.
If ` = 1 and Q1 is constant, then φ or ψ, say φ is constant. In all
cases, up to changing (φ, ψ) to L(φ, ψ) for some L ∈ GL2(K), one may
assume that φ is a monomial m and that m is not a monomial of ψ.
Observe then that if ψ has at least two monomials then Qi = hi(m,ψ)
can be a monomial only if hi(u, v) = ud and so ` = 1 and Q1 = md.

We now distinguish two cases.

3.5.2. 1st case: P is homogeneous in two monomials.
Let P = h(m1,m2) be a maximal (m1,m2)-homogeneous decomposi-

tion in degree δ with m1 and m2 monomials. From above P = h0(m,ψ)
is another maximal homogeneous decomposition.

If ψ itself is a monomial then from lemma 3.7 (1), we have d = δ
and (m,ψ) = (am1, bm2) or (m,ψ) = (bm2, am1) for some non-zero
constants a, b ∈ K. Conclude each Qi is homogeneous in m1 and m2 in
degree δ and as Qi is a monomial, it should be of the form mk

1m
δ−k
2 for

some k ∈ {0, . . . , δ}. Conversely, any set consisting of such monomials
is clearly a reducibility monomial site of P .

Assume next that ψ is not a monomial. From the preliminary discus-
sion ` = 1 and Q1 = md. In particular, P and m are relatively prime.
It follows from lemma 3.7 (2) that P = ψd′′ with ψ homogeneous in
m1 and m2 and d′′ > 2. In particular this can only occur if P is a
pure power. Thus we are done with case (1) of theorem 3.3 (general)
where P being a pure power is excluded. If P is a pure power, what
we have obtained is contained in possibilities (1) and (2) from theorem
3.3 (addendum 2).
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3.5.3. 2nd case: P is not homogeneous in two monomials.
In this case ψ is not a monomial and the desired conclusions — that

is, on one hand, case (2) of theorem 3.3 (general) and on the other hand
that only possibility (2) can occur apart from possibilities (1) and (3)
in theorem 3.3 (addendum 2) — are part of the preliminary discussion.

4. Specialization

In this section we explain how irreducibility properties of F (x, λ) can
be preserved by specialization of the variables λi in K. This is the last
stage towards the results stated in the introduction.

4.1. Using Stein like results.

Proposition 4.1. Assume F (x, λ) = P+λ1Q1+· · ·+λ`Q` is irreducible

in K(λ)[x] (that is {Q1, . . . , Q`} is not a reducibility monomial site of
P ). Then for every i = 1, . . . , `, the set of λ∗i ∈ K such that P +
λ1Q1 + · · · + λi−1Qi−1 + λ∗iQi + λi+1Qi+1 + · · · + λ`Q` is reducible in

K(λ1, . . . , λi−1, λi+1, . . . , λ`)[x] is finite and of cardinality < deg(P )2.

Consequently, for every λ∗1 ∈ K but in a finite set of cardinality
< deg(P )2, for every λ∗2 ∈ K but in a finite set of cardinality < deg(P )2

(depending on λ∗1),..., for every λ∗` ∈ K but in a finite set of cardinality
< deg(P )2 (depending on λ∗1, . . . , λ

∗
`−1), the polynomial P+λ∗1Q1+· · ·+

λ∗`Q` is irreducible in K[x].

Remark 4.2. The assumption “P + λ1Q1 + · · · + λ`Q` irreducible in
K(λ)[x]” holds if it holds for a smaller `, in particular if P itself is
irreducible in K[x]. This follows immediately from the equivalence of
(1) and (3) in the Bertini-Krull theorem.

Proof of proposition 4.1. With no loss of generality we may assume i =
1 in the first part. Set G = P+λ2Q2+· · ·+λ`Q` and L = K(λ2, . . . , λ`).

By hypothesis, G+λ1Q1 is irreducible in L(λ1)[x]. From the generaliza-
tion of Stein’s theorem to general pencils of hypersurfaces P +λQ (and
not just the curves P +λ) given in [Bo] (relying on [Ru], [Lo] and [Na]),
the set of λ∗ ∈ F such that G+ λ∗Q1 is reducible in L[x] is finite and
of cardinality < deg(P )2. The second part is an easy induction. �

4.2. Proof of the results from the introduction.

4.2.1. Proof of theorem 1.1. Due to the assumptions on the monomials
of P and Q, Q cannot be a reducibility monomial in the homogeneous
case (1) from theorem 3.3 (general) nor in possibility (1) from theorem
3.3 (addendum 2). The monomial Q not being a pure power forbids
condition (2) from theorem 3.3 (addendum 1) (with ` = 1 and Q1 =
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Q) to happen and Q to be a reducibility monomial in case (2) from
theorem 3.3 (general) and in possibilities (2) and (3) from theorem 3.3

(addendum 2). Therefore P +λQ is irreducible in K(λ)[x]. Apply then
proposition 4.1 to complete the proof of theorem 1.1.

4.2.2. Proof of theorem 1.2. Assume as in theorem 1.2 that P is not
of the form h(m,ψ) with h ∈ K[u, v] homogeneous of degree > 2,
ψ ∈ K[x] and m a monomial dividing Q. In particular P is not a
pure power (for otherwise P is of this form with h(u, v) = vd for some
d > 1 and m = 1). We show below that assuming Q is a reducibility
monomial of P leads to a contradiction.

The homogeneous case (1) from theorem 3.3 (general) can be ruled
out as follows. If this case occured, then by assumption neither m1 nor
m2 could divide Q but this is not possible in view of the form of the
reducibility monomial sites in this case.

The case P is a monomial can also be excluded: condition (2) from
theorem 3.3 (addendum 1) (with ` = 1 and Q1 = Q) cannot hold since
P is not a pure power.

The remaining possibility (2) from theorem 3.3 (general) cannot hap-
pen either since in this case P should be of the form h(m,ψ) as above
and Q = md (and so m divides Q).

Conclude Q is not a reducibility monomial of P , that is, P + λQ is
irreducible in K(λ)[x], and apply proposition 4.1 to complete the proof
of theorem 1.2.

4.2.3. Proof of theorem 1.3. Here ` > 2. The reducibility monomial
sites of cardinality ` can only occur in the homogeneous cases from
theorem 3.3 or in characteristic p > 0. But these possibilities are ruled
out by the assumptions. Therefore P +λ1Q1 + · · ·+λ`Q` is irreducible
in K(λ)[x]. Apply then the classical Bertini-Noether theorem [FrJa,
proposition 8.8] or alternatively proposition 4.1 to conclude the proof.

4.3. Further consequences. We give below some variations around
Stein’s theorem which can be deduced from our results.

Corollary 4.3. Let P ∈ K[x1, . . . , xn] be a polynomial in n > 2 vari-
ables and with coefficients in the algebraically closed field K.

(1) If P is not a composed polynomial then P (x1, . . . , xn) + λ∗ is
irreducible for all but at most deg(P )− 1 values of λ∗ ∈ K.

(2) If P /∈ K[x1] and is not divisible by x1, then P (x1, . . . , xn)+λ∗x1

is irreducible for all but at most deg(P )2 − 1 values of λ∗ ∈ K.
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(3) If P ∈ K[x2, . . . , xn] is not a pure power and e is an integer such
that 0 < e 6 degP then P (x2, . . . , xn) + λ∗xe

1 is irreducible for
all but at most deg(P )2 − 1 values of λ∗ ∈ K.

(4) If n = 2 and P (x, y) ∈ K[x, y] is homogeneous of degree d > 1
but is not a pure power and Q = xiyj is a monomial of degree
i + j < d and relatively prime to P , then P (x, y) + λ∗xiyj is
irreducible for all but at most deg(P )2 − 1 values of λ∗ ∈ K.

Proof. (1) This is the special case Q = 1 of theorem 1.2 (see the com-
ment after theorem 1.2). The bound for the number of exceptional
values λ∗ is obtained by using Stein’s theorem [St] instead of the gen-
eral bound from [Bo] as in proposition 4.1.

(2) Suppose that P (x1, . . . , xn) + λx1 is reducible in K(λ)[x]. As x1

is not a pure power, it follows from theorem 3.3 that P = h(m1,m2) for
some homogeneous polynomial h ∈ K[u, v] of degree d > 1 and some
monomials m1 and m2 and that x1 = mk

1m
d−k
2 for some k ∈ {0, . . . , d}.

Then we have necessarily {m1,m2} = {1, x1}. But then P = h(m1,m2)
contradicts the assumption P /∈ K[x1]. Thus P (x1, . . . , xn) + λx1 is

irreducible in K(λ)[x] and the result follows from proposition 4.1.

(3) We first show that P (x2, . . . , xn) + λxe
1 is irreducible in K(λ)[x].

From theorem 3.3 we need to exclude the two following situations.

(1) P = h(m1,m2) for some homogeneous polynomial h ∈ K[u, v]
of degree d > 1 and some relatively prime monomials m1 and
m2 and xe

1 = mk
1m

d−k
2 with 0 6 k 6 d. If 0 < k < d then

necessarily one of the two monomials, say m1, is constant and
m2 is a pure power of x1. But then P = h(m1,m2) contradicts
the assumption degx1

(P ) = 0. If k = 0, m2 is a pure power
of x1 but then P = h(m1,m2) is possible only if P = md

1 (for
otherwise degx1

(P ) > 0), which is excluded as P is not a pure
power. The case k = d is similar.

(2) P = h(m,ψ) for some homogeneous polynomial h ∈ K[u, v] of
degree d > 1 and xe

1 = md. Then m is a pure power of x1 and
as above P = h(m,ψ) is possible only if P = ψd (for otherwise
degx1

(P ) > 0), which is excluded as P is a not pure power.

The result follows then from proposition 4.1.

(4) Irreducibility of P (x, y)+λxiyj in K(λ)[x, y] readily follows from
theorem 3.3 (general & addendum 1): just note P is homogeneous in
the two monomials m1 = x and m2 = y, which are relatively prime, of
degree < deg(P ) and such that m1 + λm2 is irreducible in K(λ)[x, y].
Apply then proposition 4.1 to complete the proof. �



IRREDUCIBILITY OF HYPERSURFACES 21

References

[Bo] A. Bodin, Reducibility of rational fractions in several variables, Preprint.
[Cy] E. Cygan, Factorization of polynomials, Bull. Polish Acad. Sci. Math. 40

(1992), 45–52.
[FrJa] M. Fried, M. Jarden, Field arithmetic, Springer-Verlag, 1986.
[Lo] D. Lorenzini, Reducibility of polynomials in two variables, J. Algebra 156

(1993), 65–75.
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