
NON REALITY AND NON CONNECTIVITY OFCOMPLEX POLYNOMIALSARNAUD BODINAbstra
t. Using the same method we provide negative answers to thefollowing questions: Is it possible to �nd real equations for 
omplex poly-nomials in two variables up to topologi
al equivalen
e (Lee Rudolph)?Can two topologi
ally equivalent polynomials be 
onne
ted by a 
ontin-uous family of topologi
ally equivalent polynomials?
1. Introdu
tionTwo polynomials f; g 2 C [x; y℄ are topologi
ally equivalent, and we willdenote f � g, if there exist homeomorphisms � : C 2 �! C 2 and 	 : C �! Csu
h that gÆ� = 	Æf . They are algebrai
ally equivalent, and we will denotef � g, if we have � 2 Aut C 2 and 	 = id.It is always possible to �nd real equations for germs of plane 
urves up totopologi
al equivalen
e. In fa
t the proof is as follows: the topologi
al typeof a germ of plane 
urve (C; 0) is determined by the 
hara
teristi
 pairs ofthe Puiseux expansions of the irredu
ible bran
hes and by the interse
tionmultipli
ities between these bran
hes. Then we 
an 
hoose the 
oeÆ
ientsof the Puiseux expansions in R (even in Z). Now it is possible (see [7℄,appendix to 
hapter 1) to �nd a polynomial f 2 R [x; y℄ (even in Z[x; y℄)su
h that the germ (f = 0; 0) is equivalent to the germ (C; 0).This property has been widely used by N. A'Campo and others (see [1℄ forexample) in the theory of divides. Lee Rudolph asked the question whetherit is true for polynomials [10℄. We give a negative answer:Theorem A. Up to topologi
al equivalen
e it is not always possible to �ndreal equations for 
omplex polynomials.

2.We now deal with another problem. In [5℄ we proved that a family ofpolynomials with some 
onstant numeri
al data are all topologi
ally equiva-lent. More pre
isely for a polynomial let m = (�;#Ba� ; �;#B1;#B) be themulti-integer respe
tively 
omposed of the aÆne Milnor number, the num-ber of aÆne 
riti
al values, the Milnor number at in�nity, the number of
riti
al values at in�nity, the number of 
riti
al values (with B = Ba� [B1).Then we have a global version of the Lê-Ramanujam �-
onstant theorem:1



2 ARNAUD BODINTheorem ([5℄). Let (ft)t2[0;1℄ be a family of 
omplex polynomials in twovariables whose 
oeÆ
ients are polynomials in t. Suppose that the multi-integer m(t) and the degree deg ft do not depend on t 2 [0; 1℄. Then thepolynomials f0 and f1 are topologi
ally equivalent.It is true that two topologi
ally equivalent polynomials have the samemulti-integers m. A natural question is: 
an two topologi
ally equivalentpolynomials be 
onne
ted by a 
ontinuous family of topologi
ally equivalentpolynomials ?Theorem B. There exist two topologi
ally equivalent polynomials f0; f1 that
annot be 
onne
ted by a family of equivalent polynomials. That means thatfor ea
h 
ontinuous family (ft)t2[0;1℄ there exists a � 2℄0; 1[ su
h that f� isnot topologi
ally equivalent to f0.It 
an be noti
ed that the answer is positive for algebrai
 equivalen
e.Two algebrai
ally equivalent polynomials 
an be 
onne
ted by algebrai
allyequivalent polynomials sin
e Aut C 2 is 
onne
ted by Jung's theorem.Su
h kinds of problems have been studied by V. Kharlamov and V. Ku-likov in [9℄ for 
uspidal proje
tive 
urves. They give two 
omplex 
onjugateproje
tive 
urves that are not isotopi
. The example with lowest degreehas degree 825. In [2℄, E. Artal, J. Carmona and L. Cogolludo give exam-ples of proje
tive 
urves C;C 0 of degree 6 that have 
onjugate equationsin Q (p2) but the pairs (P2 ; C) and (P2 ; C 0) are not homeomorphi
 by anorientation-preserving homeomorphism.3.The method used in this note is based on the relationship between topo-logi
al and algebrai
 equivalen
e: we set a family (fs)s2C of polynomialssu
h that (fs = 0) is a line arrangement in C 2 . One of the line depends ona parameter s 2 C . There are enough lines in order that ea
h polynomialis algebrai
ally essentially unique. Moreover every polynomial topologi
allyequivalent to fs is algebrai
 equivalent to a fs0 , where s0 may be di�erentfrom s.For generi
 parameters the polynomials are topologi
ally equivalent alltogether and the fun
tion fs is a Morse fun
tion on C 2 n f�1s (0). We 
hooseour 
ounter-examples with non-generi
 parameters, for su
h an example fkis not a Morse fun
tion on C 2 nf�1k (0). The fa
t that non-generi
 parametersare �nite enables us to prove the requested properties.4. Non realityLet fs(x; y) = xy(x� y)(y � 1)(x� sy):Let k; �k be the roots of s2 � s+ 1.Theorem A. There does not exist a polynomial g with real 
oeÆ
ients su
hthat g � fk.



NON REALITY AND NON CONNECTIVITY OF COMPLEX POLYNOMIALS 3Let C = f0; 1; k; �kg. Then for s 2 C n C, fs veri�es � = 14, #Ba� =3 and B1 = ?. By the 
onne
tivity of C n C and the global version ofthe �-
onstant theorem, two polynomials fs and fs0 , with s; s0 =2 C, aretopologi
ally equivalent.The polynomials fk and f�k verify � = 14, but #Ba� = 2. Then su
h apolynomial is not topologi
ally equivalent to a generi
 one fs, s =2 C. In fa
tfor s =2 C there are two non-zero 
riti
al �bers with one double point forea
h one. For s = k or s = �k, there is only one non-zero 
riti
al �ber withan ordinary 
usp.Lemma 1. Let s; s0 2 C . The polynomials fs and fs0 are algebrai
ally equiv-alent if and only if s = s0 or s = 1� s0.In parti
ular the polynomials fk and f�k are algebrai
ally equivalent.Proof. Let us suppose that fs and fs0 are algebrai
ally equivalent. Thenwe 
an suppose that there exists � 2 Aut C 2 su
h that fs0 = fs Æ �. Su
ha � must send the lines (x = 0); (y = 0) to two lines, then � is linear:�(x; y) = (ax + by; 
x + dy). A 
al
ulus proves that �(x; y) = (x; y) or�(x; y) = (y � x; y) that is to say s = s0 or s = 1� s0.Lemma 2. Fix s 2 C and let f be a polynomial su
h that f � fs. Thereexists s0 su
h that f � fs0 .Then lemma 1 implies that there are only two 
hoi
es for s0, but s0 
anbe di�erent from s.Proof. The 
urve f�1s (0) 
ontains the simply 
onne
ted 
urve xy(x� y)(x�sy), then the 
urve f�1(0) 
ontains also a simply 
onne
ted 
urve (with 4
omponents), by the generalization of Za��denberg-Lin theorem (see [4℄) thissimply 
onne
ted 
urve is algebrai
ally equivalent to xy(x�y)(x�s0y). Thenthe polynomial f is algebrai
ally equivalent to xy(x�y)(x�s0y)P (x; y). The
urve C de�ned by (P = 0) is homeomorphi
 to C and admits a polynomialparameterization (�(t); �(t)) with �; � 2 C [t℄. Sin
e C does not interse
t theaxe (y = 0), � is a 
onstant polynomial; sin
e C interse
ts the axe (x = 0)at one point � is monomial. An equation of P is now P (x; y) = yn � �. Bythe irredu
ibility of C and up to an homothety we get P (x; y) = y�1. Thatis to say f is algebrai
ally equivalent to fs0 .5.Let g 2 C [x; y℄, if g(x; y) =P ai;jxiyj then we denote by �g the polynomialde�ned by �g(x; y) =P �ai;jxiyj. Then g = �g if and only if all the 
oeÆ
ientsof g are real.We prove theorem A. Let suppose that there exists a polynomial g su
hthat g = �g and g � fk. There exists s 2 C su
h that g � fs. Sin
e fk hasonly two 
riti
al values, g and fs have two 
riti
al values. Then s = k ors = �k (s = 0 or s = 1 gives a polynomial with non-isolated singularities).



4 ARNAUD BODINAs fk � f�k we 
an 
hoose s = k. As a 
onsequen
e we have � 2 Aut C 2su
h that g = fk Æ �:Let � be � = (p; q): Then g = pq(p� q)(q� 1)(p� kq). As g = �g we have: �p; q; p� q; q � 1; p� kq	 = ��p; �q; �p� �q; �q � 1; �p� �k�q	:Moreover by the 
on�guration of the lines we have that q � 1 = �q � 1. Soq = �q. Hen
e q 2 R [x; y℄. So�p; p� q; p� kq	 = ��p; �p� �q; �p� �k�q	:Let suppose that p 6= �p. Then p = �p� q or p = �p� �kq. So p� �p equals �qor ��kq. But p� �p has 
oeÆ
ients in iR , whi
h is not the 
ase of q 2 R [x; y℄nor of �kq. Then p = �p. We have proved that � = (p; q) has real 
oeÆ
ients.From g = fk Æ � we get �g = �fk Æ ��. So g = f�k Æ �. On the one handfk = g Æ ��1 and on the other hand f�k = g Æ ��1. So fk = f�k, then k = �kwhi
h is false. It ends the proof.We 
ould have end in the following way: � = (p; q) is in Aut C 2 with real
oeÆ
ients, then �, 
onsidered as a real map, is in Aut R 2 (see [3, Theorem2.1℄ for example). Then fk = g Æ��1 with g;��1 with real 
oeÆ
ients, thenfk has real 
oeÆ
ients whi
h provides the 
ontradi
tion.6. Non 
onne
tivityLet fs(x; y) = xy(y � 1)(x+ y � 1)(x� sy):Let C be the roots ofs(s�1)(s+1)(256s4+736s3+825s2+736s+256)(256s4+448s3+789s2+448s+256):Then for s 2 C n C, fs veri�es � = 14, #Ba� = 4 and B1 = ?. For s; s0 =2 C,fs and fs0 are topologi
ally equivalent. The roots of 256s4+448s3+789s2+448s + 256 are of the form �k; �k; 1=k; 1=�k	 : The polynomials fk and f�kverify � = 14, but #Ba� = 3. Then su
h a polynomial is not topologi
allyequivalent to a generi
 one fs, s =2 CTheorem B. The polynomials fk and f�k are topologi
ally equivalent andit is not possible to �nd a 
ontinuous family (gt)t2[0;1℄ su
h that g0 = fk,g1 = f�k and gt � fk for all t 2 [0; 1℄.The polynomials fk and f�k are topologi
ally equivalent sin
e we have theformula f�k(�x; �y) = fk(x; y).The two following lemmas are similar to lemmas 1 and 2.Lemma 3. The polynomials fs and fs0 are algebrai
ally equivalent if andonly if s = s0 or s = 1=s0.Lemma 4. Fix s and let f be a polynomial su
h that f � fs. Then thereexists s0 su
h that f � fs0 .



NON REALITY AND NON CONNECTIVITY OF COMPLEX POLYNOMIALS 57.We now prove theorem B. Let us suppose that su
h a family (gt) doesexist. Then by lemma 4 for ea
h t 2 [0; 1℄ there exists s(t) 2 C su
h thatgt is algebrai
ally equivalent to fs(t) (in fa
t there are two 
hoi
es for s(t)).We 
an suppose that there exists �t 2 Aut C 2 su
h that fs(t) = gt Æ �t.We now prove that the map t 7! �t 
an be 
hosen 
ontinuous, that is tosay the 
oeÆ
ients of the de�ning polynomials are 
ontinuous fun
tions oft. We write gt = AtBtGt su
h that A0(x; y) = x, B0(x; y) = y and the mapst 7! At, t 7! Bt are 
ontinuous. So the automorphism ��1t is de�ned by��1t (x; y) = �At(x; y); Bt(x; y)�:By the inverse lo
al theorem with parameter t, we have that t 7! �t is a
ontinuous fun
tion. Then the map t 7! fs(t) is a 
ontinuous fun
tion, asthe 
omposition of two 
ontinuous fun
tions. As s(t) is a 
oeÆ
ient of thepolynomial fs(t), the map t 7! s(t) is a 
ontinuous fun
tion.As a 
on
lusion we have a map t 7! s(t) whi
h is 
ontinuous and su
hthat s(0) = k and s(1) = �k. It implies that there exists � 2℄0; 1[ su
hthat s(�) =2 C. On the one hand g� is algebrai
ally, hen
e topologi
ally,equivalent to fs(�); on the other hand g� is topologi
ally equivalent to fk(by hypothesis). As s(�) =2 C, fs(�) and fk are not topologi
ally equivalent(be
ause #Ba� are di�erent), it provides a 
ontradi
tion.
8.The 
al
ulus have been done with the help of Singular, [8℄, and espe-
ially with author's library 
riti
 des
ribed in [6℄.This resear
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er
a Matem�ati
a ofBar
elona and was supported by a Marie Curie Individual Fellowship of theEuropean Community (HPMF-CT-2001-01246).
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