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Abstract. In analogy with the holomorphic case, we compare the
topology of Milnor fibrations associated to a meromorphic germ
f/g : the local Milnor fibrations given on Milnor tubes over punc-
tured discs around the critical values of f/g, and the Milnor fibra-
tion on a sphere.

1. Introduction

The classical fibration theorem of Milnor in [6] says that every holo-
morphic map (germ) f : (Cn, 0) → (C, 0) with n > 2 and a critical
point at 0 ∈ Cn has two naturally associated fibre bundles, and both
of these are equivalent. The first is:

(1) φ =
f

|f |
: Sε \K −→ S1

where Sε is a sufficiently small sphere around 0 ∈ Cn and K = f−1(0)∩
Sε is the link of f at 0. The second fibration is:

(2) f : Bε ∩ f−1(∂Dδ) −→ ∂Dδ
∼= S1

where Bε is the closed ball in Cn with boundary Sε and Dδ is a disc
around 0 ∈ C which is sufficiently small with respect to ε.

The set N(ε, δ) = Bε∩f−1(∂Dδ) is usually called a local Milnor tube
for f at 0, and it is diffeomorphic to Sε minus an open regular neigh-
bourhood T of K. (Thus, to get the equivalence of the two fibrations
one has to “extend” the latter fibration to T \K.) In fact, in order to
have the second fibration one needs to know that every map-germ f as
above has the so-called “Thom property”, which was not known when
Milnor wrote his book. What he proves is that the fibers in (1) are
diffeomorphic to the intersection f−1(t) ∩ Bε for t close enough to 0.
The statement that (2) is a fibre bundle was proved later in [5] by Lê
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Dũng Tráng in the more general setting of holomorphic maps defined
on arbitrary complex analytic spaces, and we call it the Milnor-Lê fi-
bration of f . Once we know that (2) is a fibre bundle, the arguments
of [6, Chapter 5] show this is equivalent to the Milnor fibration (1).

The literature about these fibrations is vast, and so are their gen-
eralizations to various settings, including real analytic map-germs and
meromorphic maps, and that is the starting point of this article.

Let U be an open neighbourhood of 0 in Cn and let f, g : U −→ C be
two holomorphic functions without common factors such that f(0) =
g(0) = 0. Let us consider the meromorphic function F = f/g : U →
CP 1 defined by (f/g)(x) = [f(x)/g(x)]. As in [3], two such germs at 0,
F = f/g and F ′ = f ′/g′ are considered as equal (or equivalent) if and
only if f = hf ′ and g = hg′ for some holomorphic germ h : Cn → C
such that h(0) 6= 0. Notice that f/g is not defined on the whole U ; its
indetermination locus is

I =
{
z ∈ U | f(x) = 0 and g(x) = 0

}
.

In particular, the fibers of F = f/g do not contain any point of I : for
each c ∈ C, the fiber F−1(c) is the set

F−1(c) =
{
x ∈ U | f(x)− cg(x) = 0

}
\ I .

In a series of articles, S. M. Gusein-Zade, I. Luengo and A. Melle-
Hernández, and later D. Siersma and M. Tibǎr, studied local Milnor
fibrations of the type (2) associated to every critical value of the mero-
morphic map F = f/g. See for instance [3, 4], or Tibar’s book [12] and
the references in it. Of course the “Milnor tubes” Bε ∩ F−1(∂Dδ) in
this case are not actual tubes in general, since they may contain 0 ∈ U
in their closure. These are in fact “pinched tubes”.

It is thus natural to ask whether one has for meromorphic map-
germs fibrations of Milnor type (1), and if so, how these are related to
those of the Milnor-Lê type (2) studied (for instance) in [3, 4, 12]. The
first of these questions was addressed in [10, 1, 11] from two different
viewpoints, while the answer to the second question is the bulk of this
article.

In fact, it is proved in [1] that if the meromorphic germ F = f/g is
semitame (see the definition in Section 2), then

(3)
F

|F |
=

f/g

|f/g|
: Sε \ (Lf ∪ Lg) −→ S1

is a fiber bundle, where Lf = {f = 0} ∩ Sε and Lg = {g = 0} ∩ Sε are
the oriented links of f and g. Notice that away from the link Lf ∪ Lg
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one has an equality of maps:

f/g

|f/g|
=

fḡ

|fḡ|
,

where ḡ denotes complex conjugation. It is proved in [11] that if the
real analytic map fḡ has an isolated critical value at 0 ∈ C and satisfies
the Thom property, then the Milnor-Lê fibration of fḡ,

(4) N(ε, δ) := Bε ∩ (fḡ)−1(∂Dδ)
fḡ−→ ∂Dδ

∼= S1 ,

is equivalent to the Milnor fibration (3) of f/g when this map is semi-
tame. That is, the fibration (4) on the Milnor tube N(ε, δ) of fḡ is
equivalent to the Milnor fibration (3) of the meromorphic germ f/g.

In this article we complete the picture by comparing the local fi-
brations of Milnor-Lê type of a meromorphic germ f/g studied by
Gusein-Zade et al, with the Milnor fibration (3). We prove that if the
germ f/g is semitame and (IND)-tame (see Sections 2 and 3), then the
global Milnor fibration (3) for f/g is obtained from the local Milnor
fibrations of f at 0 and ∞ by a gluing process that is, fiberwise, rem-
iniscent of the classical connected sum of manifolds (see Theorem 9,
and its corollaries, in Section 5).

Acknowledgements: The authors thank the referee for his/her valuable
comments. The research for this article was partially supported by the
CIRM at Luminy, France, through a “Groupe de Travail”; there was also
partial financial support from the Institut de Mathématiques de Luminy and
from CONACYT and PAPIIT-UNAM, Mexico, and the authors are grateful
to all these institutions for their support.

2. Semitameness and the global Milnor fibration of F

Adapting Milnor’s definition [6], we define the gradient of F = f/g
at a point x ∈ U \ I by :

grad(f/g) =

(
∂(f/g)

∂x1

, . . . ,
∂(f/g)

∂xn

)
.

The following definitions were introduced in [1] following ideas of [7].
We consider the set

M(F ) =
{
x ∈ U \ I | ∃λ ∈ C, grad(f/g)(x) = λx

}
consisting of the points of non-transversality between the fibres of f/g
and the spheres Sr centered at the origin of Cn.
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Definition 1. We define a bifurcation set B for the meromorphic func-
tion F = f/g as follows. A value c ∈ CP 1 is in B if and only if there
exists a sequence of points (xk)k∈N in M(F ) such that

lim
k→∞

xk = 0 and lim
k→∞

F (xk) = c .

Later, in Section 4, we will compare this bifurcation set B with the
set of atypical values of F introduced in [3].

Let Lf = {f = 0} ∩ Sε and Lg = {g = 0} ∩ Sε be the oriented links
of f and g.

Let W be a subset of CP 1 and consider the map

ΦW =
f/g

|f/g|
:
(
Sε \ (Lf ∪ Lg)

)
∩ F−1(W ) −→ S1 .

Proposition 2. If W is an open set in CP 1 such that W ∩ B = ∅,
then there exists ε0 > 0 such that for each ε 6 ε0, the map ΦW is a
C∞ locally trivial fibration over its image.

The proof is that of [1, Theorem 2.6]; it follows Milnor’s proof [6,
Chapter 4] with minor modifications. See also [7]. The main modifica-
tion of Milnor’s proof concerns Lemma 4.4 of [6], for which an adapted
formulation and a detailed proof is given in [1, Lemma 2.7].

Definition 3. The meromorphic function f/g is semitame at 0 if B ⊂
{0,∞}.

Proposition 2 is a more general statement than [1, Theorem 2.6].
When F is semitame, the following is obtained by applying Proposition
2 to W = CP 1 \ {0,∞} :

Corollary 4. ([1, Theorem 2.6]) If F is semitame, then there exists
ε0 > 0 such that for each ε 6 ε0, the map

ΦF =
f/g

|f/g|
: Sε \ (Lf ∪ Lg) −→ S1

is a C∞ locally trivial fibration.

Definition 5. When F is semitame, we call ΦF the global Milnor fi-
bration of the meromorphic germ F . We denote by MF the fibre of
ΦF and we call it the global Milnor fibre of F .

It is shown in [11] that ΦF is a fibration of the multilink Lf ∪ −Lg,
where −Lg means Lg with the opposite orientation.

For our purpose, it will be necessary to consider the restriction Φ̌F

of ΦF to
(
Sε \ (Lf ∪Lg)

)
∩F−1(DR(0)\Dδ(0)) where δ � 1 and 1 � R.
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Definition 6. We denote by M̌F the fibre of Φ̌F and we call it the
truncated global Milnor fibre of F .

3. Tameness near the indetermination points

In this section we introduce a technical condition on f/g: the (IND)-
tameness ((IND) for “indetermination”) which enables us to control
the behaviour of f/g in a neighbourhood of its indetermination points
when n > 3. This condition will appear as an essential hypothesis for
our main Theorem 9. Note that this section only concerns the case
n > 3.

Let us fix r > 0 and let us consider some sufficiently small constants
0 < ε′ � δ � ε � 1. These constants will be defined more precisely
in the proof of Theorem 9.

Let X = F−1
(
Dr(0) \ D̊δ(0)

)
∩
(
Bε \ B̊ε′

)
. See Figure 2 in Section

7.
For η > 0, we consider the neighbourhood of I defined by:

Nη =
{
z ∈ Bε | |f(z)|2 + |g(z)|2 6 η2

}
,

and its boundary,

∂Nη =
{
z ∈ Bε | |f(z)|2 + |g(z)|2 = η2

}
.

The proof of Theorem 9 is based on the existence of a vector field v
on X which satisfies for all sufficiently small η, 0 < η � ε′ the following
properties (see Figure 3 in Section 7):

(1) The argument of F is constant along the integral curves of v.
(2) The norm of z is strictly increasing along the integral curves of

v.
(3) For all z ∈ Nη, the integral curve passing through z is contained

in the tube ∂Nη′ where η′2 = |f(z)|2 + |g(z)|2.
In this paper, we use two different inner products on Cn:

(HF) The usual hermitian form 〈 , 〉 : Cn × Cn → C defined for
z = (z1, . . . , zn), z′ = (z′1, . . . , z

′
n) ∈ Cn by:

〈z, z′〉 =
n∑

k=1

zkz̄′k.

(IP) The usual inner product 〈 , 〉R : R2n × R2n → R on R2n :

〈z, z′〉R =
n∑

k=1

(xkx
′
k + yky

′
k),

where for all k, zk = xk + iyk and z′k = x′k + iy′k.
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Notice that for z, z′ ∈ Cn,

〈z, z′〉 = 〈z, z′〉R + i〈z, iz′〉R.

As we will show in the proof of Theorem 9, the semitameness of f/g
guarantees the existence of a vector field v on X such that:

(i) For all z ∈ X, 〈v(z), grad logF (z)〉 = +1.
(ii) For all z ∈ X \M(F ) , 〈v(z), z〉 > 0.
(iii) For all z ∈ U , Re〈v(z), z〉 > 0.

So that conditions (1) and (2) are satisfied. We now introduce an
additional hypothesis which will ensure that (3) is also satisfied, i.e.
that v is such that :

(iv) For all z ∈ X ∩ Nη \ I one has v(z) ∈ Tz∂Nη′ , where η′2 =
|f(z)|2 + |g(z)|2.

As shown in the proof of the Theorem 9, semitameness is sufficient
to define such a v in a neighbourhood of M(F ) ∩ Nη. Now, let z ∈
Nη \M(F ). We set γ(z) = |f(z)|2 + |g(z)|2 so that

Tz∂Nη′ = {v ∈ R2n | 〈v, gradR γ(z)〉R = 0} .

Then a vector v ∈ R2n satisfies (i), (ii) and (iv) if and only if

〈v, grad logF (z)〉 = +1 , 〈v, z〉 > 0 and 〈v, gradR γ(z)〉R = 0 .

Such a v exists if and only if gradR γ(z) does not belong to the C-
vector space generated by z and grad logF (z), or equivalently by z
and gradF (z). This makes natural the following definition. We set:

N(F ) = {z ∈ U \ I
∣∣ ∃λ, µ ∈ C, gradR γ(z) = λz + µ gradF (z)} .

Definition 7. Let n > 3. We say that f/g : (Cn, 0) → (C, 0) is (IND)-
tame if there exist sufficiently small constants 0 < η � ε′ � δ � ε� 1
such that (

N(F ) ∩Nη ∩X
)
⊂
(
M(F ) ∩Nη ∩X

)
.

When n = 2, we define the (IND)-tameness as an empty condition.

Notice that (IND)-tameness is a generic property in the following
sense. Let f, g : (Cn, 0) → (C, 0) without common factors. Then the
set of indetermination points I = {z ∈ Cn | f(z) = g(z) = 0} has
complex dimension n− 2. Moreover, N(F ) ∪M(F ) is included in the
set

P (F ) = {z ∈ Cn | rankA(z) < 3} ,
where A(z) is the matrix



MILNOR FIBRATIONS OF MEROMORPHIC FUNCTIONS 7


∂f
∂z1
f + g ∂g

∂z1

∂f
∂z2
f + g ∂g

∂z2
. . . ∂f

∂zn
f + g ∂g

∂zn

z1 z2 . . . zn

∂f
∂z1
g − ∂g

∂z1
f ∂f

∂z2
g − ∂g

∂z2
f . . . ∂f

∂zn
g − ∂g

∂zn
f


Then P (F ) is generically a real analytic submanifold of Cn with real

codimension 2n − 4. Then generically, the two germs of analytic sub-
manifolds (I, 0) and (N(F ) ∪M(F ), 0) intersect only at 0. Therefore,
when the constants 0 < η � ε′ � δ � ε� 1 are sufficiently small, we
obtain P (F ) ∩Nη ∩X = ∅, and then, f/g is (IND)-tame.

Example 1. It may happen that f/g is (IND)-tame even if I is con-
tained in N(F ) ∪M(F ). For example, let f, g : (C3, 0) → (C, 0) be
defined by f(x, y, z) = xp and g(x, y, z) = yq. Then the set of indeter-
mination points of f/g is the z-axis, and the set P (f/g) has equation
detA(x, y, z) = 0, i.e. :

zxp−1yq−1(|x|2p + |y|2q) = 0 .

Then N(f/g) is included in the plane {z = 0} and f/g is (IND)-tame,
whereas I ⊂ P (f/g). Hence f/g is also semitame.

Example 2. Let f = f(x, y) and g = g(x, y) be considered as germs
from (C3, 0) to (C, 0). Then the set of indetermination points of f/g
is again the z-axis, and the set P (f/g) has equation

z

(
∂f

∂y

∂g

∂x
− ∂f

∂x

∂g

∂y

)(
|f |2 + |g|2

)
= 0 .

Therefore f/g is (IND)-tame if and only if the jacobian curve {∂f
∂y

∂g
∂x
−

∂f
∂x

∂g
∂y

= 0} of the germ (f, g) : (C2, 0) → (C2, 0) is included in the curve

{fg = 0}.
On the other hand, it is easy to obtain examples with f/g semitame.

For instance, with f, g as above, if we regard f/g as a map-germ at 0 ∈
C3, then this is semitame if f/g is semitame as a germ from (C2, 0) into
(C, 0), since a sequence of bad points (zk) for f/g would project on the
plane z = 0 to a sequence of bad points for f/g : (C2, 0) → (C, 0). Now,
it is easy to check whether f/g : (C2, 0) → (C, 0) is semitame by using
the characterization of semitameness given in [1, Theorem 1] when
n = 2 : f/g is semitame if and only if the multilink Lf ∪−Lg is fibered.
This latter condition is easily checked by computing a resolution graph
of the meromorphic function f/g: the multilink Lf ∪ −Lg is fibered if
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Sε

Sε′

F
|F | = 1

F = 0
F = δ

F = r

~v

Figure 1. Resolution graph of x3 + y2/x2 + y3

and only if the multiplicities of f and g are different on each rupture
component of the exceptional divisor of f/g.

Example 3. Let f(x, y) = x3 + y2 and g(x, y) = x2 + y3. Then f/g
is semitame, as can be seen on the resolution graph of f/g represented
on Figure 1. The number between parentheses on each vertex is the
difference mf −mg where mf (respectively mg) is the multiplicity of f
along the corresponding component of the exceptional divisor.

But f/g, seen as a map in variables (x, y, z) is not (IND)-tame,
because the germ of Jacobian curve (J, 0) of (f, g) has equation xy = 0
and N(f/g) = J \ I.

4. The local Milnor fibrations of F

The local Milnor fibers of a meromorphic function F were defined in
[3] as follows. Let us fix c ∈ CP 1. There exists ε0 > 0 such that for any
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ε, 0 < ε 6 ε0, the restriction F| : Bε \ I → CP 1 defines a C∞ locally
trivial fibration over a punctured neighbourhood ∆c of the point c in
CP 1.

Definition 8. The fiber Mc
F = F−1(c′) ∩ Bε, c

′ ∈ ∆c of this fibration
is called the c-Milnor fiber of F . Notice that Mc

F is a noncompact
complex (n− 1)-dimensional manifold with boundary.

Let δ, 0 < δ � ε, be such that Dδ(c) ⊂ (∆c ∪ {c}) . We call the
restriction

φc = F| : F
−1(S1

δ(c)) ∩ Bε −→ S1
δ(c)

the c-local Milnor fibration of the meromorphic map F .

According to [3, Lemma 1], the diffeomorphism class of the non-
compact (n− 1)-complex manifold Mc

F does not depend on ε, and the
isomorphism class of the fibration φc does not depend on ε and δ. As
shown in [12], this is in fact an immediate consequence of Lê’s fibration
theorem in [5] applied to the pencil {f − tg = 0}.

Let c be an isolated point of B, the bifurcation set introduced in Defi-
nition 1. For our purpose it will be necessary to consider the restriction
of φc to the complement in Bε of a small ball Bε′ , 0 � ε′ � δ, defined as
follows. We choose the punctured disc ∆c in such a way that ∆c∩B = ∅
(but usually c ∈ B). Therefore there exists ε′, 0 < ε′ � δ � ε, such
that M(F ) ∩ F−1(S1

δ(c)) ∩ Bε′ = ∅. For such an ε′, we consider the
restriction of the c-local Milnor fibration

φ̌c = F| : F
−1(S1

δ(c)) ∩ (Bε \ B̊ε′) −→ S1
δ(c) .

And we denote by M̌c
F = Mc

F \ B̊ε′ the fiber of φ̌c Again, the diffeo-
morphism class of M̌c

F and the isomorphism class of φ̌c do not depend
on ε, δ and ε′.

Remark. A value c ∈ CP 1 is called in [4] a typical value of the mero-
morphic germ F if the map F : Bε \ I → CP 1 is a locally trivial (and
thus trivial) fibration over a neighbourhood of c. Let B be the set of
values c ∈ CP 1 which are not typical (called atypical ) of F . If B
is the bifurcation set defined in Definition 1 and if c /∈ B then, by
Ehresmann’s fibration theorem, one has c /∈ B. Therefore B ⊂ B. In
particular, if F is semitame then B ⊂ B ⊂ {0, 1}.

Now let U ⊂ CP 1 be the maximal open set of equisingularity in
the sense of Zariski and let B′ := CP 1 \ U . Then obviously B′ ⊂ B.
Moreover, when n = 2 one has B′ = B by [1, Proposition 2.11] and
then B′ = B = B.
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5. The results

Theorem 9. Let f, g : (Cn, 0) → (C, 0) be two germs of holomorphic
functions without common factors such that F = f/g is semitame and
(IND)-tame. Then for all r > 0 such that B ∩Dr(0) ⊂ {0}, there exist
ε, ε′ and δ, 0 < ε′ � δ � ε� 1, such that the restricted 0-local Milnor
fibration

(5) φ̌0 : F−1(S1
δ(0)) ∩ (Bε \ B̊ε′) −→ S1

δ(0)

is diffeomorphic to the fibration

(6) ΦW :
(
Sε \ (Lf ∪ Lg)

)
∩ F−1(W ) −→ S1.

where W = Dr(0) \ D̊δ(0).

Remember that φ̌0 is a restriction of F and ΦW is a restriction of
F
|F | . We are now able to draw some corollaries in the spirit of [8].

Corollary 10. Let f, g : (Cn, 0) → (C, 0) be two germs of holomorphic
functions without common factors such that F = f/g is semitame and
(IND)-tame. For δ � 1 and R� 1 one has:

a) The truncated global Milnor fiber M̌F = Φ̌−1
F (1) is diffeomor-

phic to the union of the two restricted local Milnor fibers M̌0
F =

φ̌−1
0 (δ) and M̌∞

F = φ̌−1
∞ (R) glued along their boundary compo-

nents ∂0 = φ̌−1
0 (δ) ∩ Sε′ and ∂∞ = φ̌−1

∞ (R) ∩ Sε′

M̌F ' M̌0
F ∪∂ M̌∞

F .

b) The Euler characteristics verify:

χ
(
M̌F

)
= χ

(
M̌0

F

)
+ χ

(
M̌∞

F

)
.

and

χ (MF ) = χ
(
M0

F

)
+ χ (M∞

F ) .

c) The monodromies ȟ0 : M̌0
F → M̌0

F and ȟ∞ : M̌∞
F → M̌∞

F of
the fibrations φ̌0 and φ̌∞ are the restrictions of the monodromy
ȟ : M̌F → M̌F of the fibration Φ̌F .

Proof of the Corollary. We apply Theorem 9 twice with r = 1. The
first time as stated, the second time around ∞, or in other words,
around 0 for g/f . The proof of Theorem 9 furnishes:

• a diffeomorphism Θ0 from

φ̌−1
0 (δ) = F−1(δ) ∩

(
Bε \ Bε′)
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to
F

|F |

−1

(1) ∩ Sε ∩ F−1(D1(0) \ D̊δ(0)),

such that Θ0(∂0) = F−1(1) ∩ Sε.

• and a diffeomorphism Θ∞ from(
φ̌∞
)−1

(R) = F−1(R) ∩
(
Bε \ Bε′)

to
F

|F |

−1

(1) ∩ Sε ∩ F−1(DR(0) \ D̊1(0)),

such that Θ∞(∂∞) = F−1(1) ∩ Sε.

The intersection of the images of Θ0 and Θ∞ is

Θ0(∂0) = Θ∞(∂∞) = F−1(1) ∩ Sε .

Then M̌F = Φ̌−1
F (1) is diffeomorphic to the union of φ̌−1

0 (δ) and of
φ̌−1
∞ (R) glued along their boundary components ∂0 and ∂∞. This proves

statement a).

The Euler characteristic verifies χ(A∪B) = χ(A)+χ(B)−χ(A∩B).
As the intersection of the images of Θ0 and Θ1 is a closed oriented man-
ifold of odd dimension, then its Euler characteristic is 0. This proves
the first equation in statement b). For the second equation, notice M0

F

(respectively M∞
F ) retracts by deformation to M̌0

F (respectively M̌∞
F ),

and MF retracts by deformation to M̌F , proving b).
The statement c) follows from a) and Theorem 9. �

Corollary 11. Let f, g : (Cn, 0) → (C, 0) be two germs of holomorphic
functions without common factors such that F = f/g is semitame and
(IND)-tame. If f, g have an isolated singularity at 0, then

χ (MF ) = (−1)n−1
(
µ(f, 0) + µ(g, 0)− 2µ(f + tg, 0)

)
.

Where t is a generic value (i.e., t 6= 0,∞) and µ is the Milnor number.

Proof. According to [3, Theorem 2],

χ
(
M0

F

)
= (−1)n−1

(
µ(f, 0)− µ(f + tg, 0)

)
and

χ (M∞
F ) = (−1)n−1

(
µ(g, 0)− µ(f + tg, 0)

)
.

�
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Corollary 12. Let f, g : (Cn, 0) → (C, 0) be two germs as in Corol-
lary 11. If n = 2, then the manifold M0

F (respectively M∞
F ) has the

homotopy type of a bouquet of circles. If we denote by λ0 (respectively
λ∞) the number of circles in this bouquet. Then MF is a bouquet of
λ0 + λ∞ − 1 circles.

6. Preliminary lemmas

The following lemmas are easily obtained by adapting the proofs of
Lemmas 4.3 and 4.4 in [6] as already performed in [7] and [1] in close
situations.

Lemma 13. Assume that the meromorphic germ F = f/g is semi-
tame at the origin. Let p : [0, 1] −→ Cn be a real analytic path with
p(0) = 0 such that for all t > 0, F (p(t)) /∈ {0,∞} and such that the
vector grad logF (p(t)) is a complex multiple λ(t)p(t) of p(t). Then the
argument of the complex number λ(t) tends to 0 or π as t→ 0.

Proof. Adapting [6, Lemma 4.4]. See also [7, Lemma 3] and [1, Lemma
2.7]. �

Lemma 14. Let F be semitame. Then there exists 0 < ε� 1 such that
for all z ∈ Bε \ (F−1(0)∪F−1(∞)) the two vectors z and grad logF (z)
are either linearly independent over C or grad logF (z) = λz with
| arg(λ)| ∈]− π

4
,+π

4
[.

Proof. Using Lemma 13. See [6, Lemma 4.3] and [7, Lemma 4]. �

Lemma 15. Let D′, D′′ be two 2-discs centered at 0 with D′ ⊂ D′′ and
D′ 6= D′′. For 0 < ε � 1, if z ∈ Sε \ (F−1(0) ∪ F−1(∞)) is such that
grad logF (z) = λz, (λ ∈ C) then

F (z) ∈ D′ or F (z) /∈ D′′.

Moreover in the first case arg(+λ) ∈]− π
4
,+π

4
[ and in the second case

arg(−λ) ∈]− π
4
,+π

4
[.

Proof. Using Lemma 13 and Lemma 14. See [7, Lemma 8]. �

7. Proof of the theorem

First step: definition of the constants.

(1) Let 0 < r < ∞ be such that B ∩ Dr(0) = {0}, where B is the
bifurcation set of the semitame1 meromorphic function f/g.

(2) As S1
r(0) is compact and S1

r(0)∩B = ∅, one can choose 0 < ε�
1 such that:

1I added this hypothesis
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a) Bε is a Milnor ball for F−1(0), for F−1(∞), for the inde-
termination set I and for all F−1(z), z ∈ S1

r(0);
b) ε satisfies the conclusion of Lemma 15 for D′ = Dr/4(0)

and D′′ = Dr+1(0).
(3) Let us choose δ, 0 < δ � ε, such that:

φ0 = F| : F
−1(S1

δ(0)) ∩ Bε −→ S1
δ(0)

is the 0-Milnor fibration of the meromorphic map F .
(4) Last, let us choose ε′0, 0 < ε′0 � δ such that

M(F ) ∩ F−1(Dr(0) \ D̊δ(0)) ∩ Bε′0
= ∅,

and let us set ε′ = ε′0/2. That such an ε′0 exists follows from the
hypothesis of f/g being semitame.2 In particular, one obtains
the restricted 0-local Milnor fibration

φ̌0 : F−1(S1
δ(0)) ∩ (Bε \ B̊ε′) −→ S1

δ(0) .

Let ψ : U → R2 be defined by ψ(z) = (log |F (z)|, ||z||2). Notice that
Conditions 2.b) and 4) imply that(

[log δ, log r]× [0, ε′0
2
] ∪ [log(r/2), log r]× [0, ε2]

)
∩ ψ(M(F )) = ∅ .

Second step : construction of a vector field.
Let us consider the set

X = F−1
(
Dr(0) \ D̊δ(0)

)
∩
(
Bε \ B̊ε′

)
.

Let us fix ρ ∈]r/2, r[ and ε′′ ∈]ε′, ε0[ and let us consider the two real
numbers 0 < b1 < b2 defined by:

b1 =
ε′′2 − ε′2

2(log ρ− log δ)
and b2 =

ε2
0 − ε′′2

2(log r − log ρ)
.

Let us fix ξ, 0 < ξ � ε′′ and an increasing C∞ map b : [0,∞[→ [0,∞[
such that ∀x 6 ε′′ − ξ, b(x) = b1, and ∀x > ε′′ + ξ, b(x) = b2.

For η > 0, we consider the neighbourhood of I defined by:

Nη =
{
z ∈ Bε | |f(z)|2 + |g(z)|2 6 η2

}
,

and its boundary,

∂Nη =
{
z ∈ Bε | |f(z)|2 + |g(z)|2 = η2

}
.

Let us fix η0, 0 < η � ε′, such that η0 satisfies the (IND)-tameness
condition : (

N(F ) ∩Nη0 ∩X
)
⊂
(
M(F ) ∩Nη0 ∩X

)
.

Then each η ∈]0, η0[ also satisfies the (IND)-tameness condition :

2I added this line
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I

I

N(I)

Sε

Sε′

Sε

F
|F | = 1

(
F
|F | = 1

)
∩ F−1(δ)

(
F
|F | = 1

)
∩ F−1(r)

F−1(δ)

F−1(δ) ∩ Sε′

F−1(δ) ∩ Sε

v(z)

In Sε

In Bε

Figure 2. Vector field

(
N(F ) ∩Nη ∩X

)
⊂
(
M(F ) ∩Nη ∩X

)
,

Let us fix η ∈]0, η0[.

Lemma 16. There exists an open neighbourhood Ω of the set M(F ) in
X, two real numbers α and β, 0 < α < β and a differentiable vector
field v on X such that:

(i) For all z ∈ X, 〈v(z), grad logF (z)〉 = +1;
(ii) For all z ∈ X \M(F ), 〈v(z), z〉 = b(|z|);
(iii) For all z ∈ Ω, Re〈v(z), z〉 ∈ [α, β];
(iv) For all z ∈ X ∩Nη, v(z) ∈ Tz∂Nη′ where η′2 = |f(z)|2 + |g(z)|2.
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Proof. Let µ > 0 such that η + µ ∈]0, η0[. We then again have the
(IND)-tameness condition :(

N(F ) ∩Nη+µ ∩X
)
⊂
(
M(F ) ∩Nη+µ ∩X

)
.

Let us denote by V the interior of Nη+µ in X, i.e.,

V = {z ∈ X | 0 6 |f(z)|2 + |g(z)|2 < (η + µ)2},
and let us consider the four following open sets ofX (the neighbourhood
Ω of M(F ) will be defined later) :

U1 = X \ (Nη ∪M(F )), U2 = Ω \Nη,

U3 = V ∩ Ω, U4 = V \M(F ) .

One has : X = U1 ∪ U2 ∪ U3 ∪ U4. The vector field v will be obtained
by constructing a vector field vi on each Ui and by defining globally v
by a partition of unity.

At first, let us define v on X \Nη = U1 ∪U2. For a point z ∈ U1, we
define v1 by using the classical construction of Milnor: for such a point
the vectors z and grad logF (z) are linearly independent over C. Thus
there exists v1(z) verifying (i) and (ii).

For each z ∈ X, let us consider the vector

u(z) =
grad logF (z)

|| grad logF (z)||2
.

Let z ∈ M(F ) ∩X. There exists λ ∈ C such that grad logF (z) = λz.
Then 〈u(z), grad logF (z)〉 = +1 and

Re〈u(z), z〉 = Re

(
λ

|λ|2

)
.

Notice that M(F )∩Bε = {z ∈ Bε | ∃λ ∈ C, gradF (z) = λz} is com-
pact. Then M(F )∩X is a compact set, and there exist c1, c2, 0 < c1 <
c2 such that for all z ∈M(F )∩X one has c1 < |λ| < c2 where λ is the
complex number such that gradF (z) = λz. Moreover, Condition 2.b)
above implies that arg(+λ) ∈] − π

4
,+π

4
[. Then there exists c′1, c

′
2 > 0

such that for all z ∈M(F ) ∩X, c′1 < Re〈u(z), z〉 < c′2.
Let us choose ν such that 0 < ν � c′1 and let us set α = c′1 − ν and

β = c′2 + ν. There exists an open neighbourhood Ω of M(F ) in X such
that for all z ∈ Ω, α < Re〈u(z), z〉 < β. Then for each z ∈ U2 = Ω\Nη,
we set v2(z) = u(z).

We now define v on V = U3 ∪ U4, i.e. near the indetermination set
I. A picture of the local situation near I is represented on Figure 3.

For a point z in V , we set

η′ =
√
|f(z)|2 + |g(z)|2 .
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ε′
2

ε′′
2

ε′0
2

ε2

log δ log r
2 log ρ log r

C ′

P

ψ(M(F ))

Figure 3. Vector field and indetermination points

Let T = T (z) be the space tangent to ∂Nη′ at z. We will construct a
vector field v on V satisfying the three conditions (i), (ii) and (iii) and
such that v(z) ∈ T .

If z ∈ U3 = V ∩Ω, let us again consider the vector u(z). If u(z) ∈ T ,
then we set v3(z) = u(z). If u(z) 6∈ T , let

Q =
(
u(z)

)⊥R ,

be the real orthogonal complement of the line spanned by the vector
u(z).

Since dimRQ = 2n − 1 and dimR T = 2n − 1, the real vector space
Q ∩ T has dimension at least n − 2. Let π : R2n → Q ∩ T be the
orthogonal projection on Q∩T in the direction of the vector iu(z). We
set

v3(z) = π(u(z)) .

Obviously v3(z) ∈ T and an easy computation shows that v3 verifies
conditions (i) and (iii).

Last, let us consider U4 = V \M(F ). Let z ∈ U4. We set γ(z) =
|f(z)|2 + |g(z)|2. There exists a vector v4(z) verifying (i), (ii) and
v4(z) ∈ T if and only if the vector

w(z) = gradR γ(z)

does not belong to the complex vector space H generated by the two
vectors w1(z) = z and w2(z) = gradF (z). This is equivalent to saying
z 6∈ N(F ), which is true because F is semitame and (IND)-tame.

Now, we define globally the vector field on X by a partition of unity.
�



MILNOR FIBRATIONS OF MEROMORPHIC FUNCTIONS 17

(1)

(2)

(0)

(−1)

(−2)

f = 0
f − tg = 0

g = 0

Figure 4. Avoidance of M(F )

Third step : integration of the vector field v.
We integrate the vector field v and we denote by C = {z = p(t)} an

integral curve.
Condition (i) implies that the argument of F (p(t)) is constant and

that |F (p(t))| is strictly increasing along C. Conditions (ii) and (iii)
implies that ‖p(t)‖ is strictly increasing along C.

Lemma 17. If C pass through a point z0 ∈ F−1(S1
δ(0))∩ (Sε′), then C

reaches Sε at a point z1 such that |F (z1)| = r.

Proof. Let C ′ be the arc of curve in R2 parametrized by t ∈ [0, log(r/δ)]
as follows :

• x(t) = t+ log δ
• ∀t ∈ [0, log(ρ/δ)], y(t) = 2b1t+ ε′2

• ∀t ∈ [log(ρ/δ), log(r/δ)], y(t) = 2b2t+ ε′′2

The arc C ′ is the union of the two segments joining the three points
(log δ, ε′2), (log ρ, ε′′2) and (log r, ε2). Then C ′ is included in the zone
P = [log δ, log r]× [0, ε′0

2]∪ [log(r/2), log r]× [0, ε2] and C ′ ∩ψ(U) = ∅.
(see Figure 4).

Now, let C be an integral curve of v passing through z0 ∈ F−1(S1
δ(0))∩

Sε′ . Then a computation analogous to that of [6] page 53, shows that
C ′ is nothing but the image of C by ψ. Therefore, the integral curve C
passing through z0 goes transversally to the spheres centered at 0 until
it reaches Sε at a point belonging to F−1(S1

r(0)). �

Then, the diffeomorphism

Θ0 : F−1(S1
δ(0)) ∩ (Bε \ B̊ε′) −→ Sε ∩ F−1(Dr(0) \ D̊δ(0)),

which sends z ∈ F−1(S1
δ(0))∩ (Bε \ B̊ε′) on the intersection Θ0(z) of the

integral curve of v passing through z with the sphere Sε ∩F−1(Dr(0) \
D̊δ(0)), is a diffeomorphism from the fibration:

F : F−1(S1
δ(0)) ∩ (Bε \ B̊ε′) −→ S1

δ(0)



18 ARNAUD BODIN, ANNE PICHON, JOSÉ SEADE

(0)

(2)

(1)

(1)

(−2)

(−1)

(−1)

−5

−1

−2

−1

−2

Graph G

(2)

(1)

(1)

−1

−2

Graph G0

(−2)

(−1)

(−1)

−1

−2

Graph G∞

Figure 5. Dual resolution graph of x2 + y3/x3 + y2

to the fibration:

(7) Φ =
F

|F |
: Sε ∩ F−1(Dr(0) \ D̊δ(0)) −→ S1.

This completes the proof of the theorem.

8. An example

Let f, g : (C2, 0) −→ (C, 0) be the two holomorphic germs defined
by:

f(x, y) = x2 + y3, g(x, y) = x2 + y3.

Let π : X −→ U be the resolution of the meromorphic function F =
f/g whose divisor is represented on Figure 1.

On Figure 5 we draw its dual graph G. The numbers between paren-
theses are the multiplicities of F along the corresponding component
of the total transform of fg by π, i.e., the (mf

i −m
g
i ) where mf

i and mg
i

are the multiplicities of f ◦ π and g ◦ π. The numbers without paren-
theses are the Euler classes. The arrows are for the strict transforms
of f and g. The strict transform of a generic fibre of F passes through
the dicritical component of the exceptional locus, i.e. the one carrying
multiplicity 0.

The meromorphic function f/g is semitame, and (IND)-tame (n =
2). One therefore has three different fibrations: the global Milnor fi-
bration of f/g,

ΦF =
f/g

|f/g|
: Sε \ (Lf ∪ Lg) −→ S1,
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and the two local Milnor fibrations φ0 = F| : F
−1(S1

δ(0))∩Bε −→ S1
δ(0)

and φ∞ = F| : F
−1(S1

δ(∞)) ∩ Bε −→ S1
δ(∞)

Using the fibration theorem for plumbed multilinks (see e.g. [11,
2.11]), one observes three different fibred multilinks in plumbing man-
ifolds on this configuration :

(1) The link Lf − Lg in the sphere S3.
(2) The link Lf in the plumbed manifold V0 whose graph G0 is the

subgraph of G determined by the divisor E2 ∪ E3.
(3) The link Lg in the plumbed manifold V∞ whose graph G∞ is

the subgraph of G determined by the divisor E3 ∪ E4.

As already mentioned, the map ΦF is a fibration of the link Lf −Lg

in the sphere S3. The two local fibrations φ0 and φ∞ are the restrictions
to the complementary of the indetermination set I of f/g of fibrations

φ̂0 and φ̂∞ of the links Lf ⊂ V0 and Lg ⊂ V∞.

The fibres M̂0
F and M̂∞

F of φ̂0 and φ̂∞ can be computed by the
Hurwitz formula from the graphs G0 and G∞. One obtains for both a
sphere with one hole. The fibre M0

F (resp. M∞
F ) is then obtained by

removing a neighbourhood of the intersection of M̂0
F with π−1(0). One

then obtains a sphere with three holes in both cases. Now the fiber of
ΦF is homeomorphic to the surface obtained by gluing together M0

F

and M∞
F along the two boundary components just created.

At last, let us recall that the isomorphism classes of the fibrations
ΦF , φ̂0 and φ̂∞ are completely described by the Nielsen invariants of
their monodromies h : MF →MF , ĥ0 : M̂0

F → M̂0
F and ĥ∞ : M̂∞

F →
M̂∞

F (see e.g. [9]). The set of Nielsen invariants is equivalent to the
data of the graph G,G0 and G∞ respectively, weighted by the genus
and the multiplicities.

In particular, it should be mentioned that the Dehn twist performed
by h on the two gluing curves ∂0 ⊂ MF is positive (it equals +5

2
ac-

cording, for instance, to the formula (3) of [9, Lemma 4.4]), whereas all
the Dehn twists performed by the monodromy of the Milnor fibration
associated with a holomorphic germ are negative. This is a general
phenomena in the case n = 2 : each dicritical component of the ex-
ceptional divisor in the resolution of f/g gives rise to a positive Dehn
twist along each of the corresponding separating curves on the fiber,
see [2, Chapter 5].

The previous arguments show that in this example, the monodromy
of the global Milnor fibration of the meromorphic germ f/g can not
possibly be the monodromy of a holomorphic germ. Then, a natu-
ral question is to ask whether something similar happens in higher
dimensions. That is, is there some property that distinguishes the
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monodromy of the global Milnor fibration of a meromorphic function
from those of holomorphic germs?
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