Milnor fibration and fibred links at infinity

Arnaud Bodin

January 29, 1999

Introduction

Let $f: \mathbb{C}^{2} \longrightarrow \mathbb{C}$ be a polynomial function. By definition $c \in \mathbb{C}$ is a regular value at infinity if there exists a disc \mathcal{D} centred at c and a compact set \mathcal{C} of \mathbb{C}^{2} such that the map $f: f^{-1}(\mathcal{D}) \backslash \mathcal{C} \longrightarrow \mathcal{D}$ is a locally trivial fibration. There are only a finite number of critical (or irregular) values at infinity. For $c \in \mathbb{C}$ and a sufficiently large real number R, the link at infinity $K_{c}=f^{-1}(c) \cap S_{R}^{3}$ is well-defined.

In this paper we sketch the proof of the following theorem which gives a characterization of fibred multilinks at infinity.

Theorem. A multilink $K_{0}=f^{-1}(0) \cap S_{R}^{3}$ is fibred if and only if all the values $c \neq 0$ are regular at infinity.

We first obtain theorem 1 , a version of this theorem was proved by A. Némethi and A. Zaharia in [NZ] (with "semitame" as a hypothesis). Here we give a new proof using resolution of singularities at infinity. This method enables us to describe the fibre and the monodromy of the Milnor fibration in terms of combinatorial invariants of a resolution of f.

Theorem 1. If there is no critical value at infinity outside $c=0$ then in the homotopy class of

$$
\frac{f}{|f|}: S_{R}^{3} \backslash f^{-1}(0) \longrightarrow S^{1}
$$

there exists a fibration.
The value 0 may be regular or not. One may specify what kind of fibration it is; if f is a reduced polynomial, then this is an open book decomposition, otherwise it is a multilink fibration of $K_{0}=f^{-1}(0) \cap S_{R}^{3}$ (see paragraph 1). The weights of K_{0} are given by the multiplicities of the factorial decomposition of f.

If 0 is a regular value at infinity and $c \neq 0$ is a critical value at infinity, W. Neumann and L. Rudolph proved in [NR] that the link $f^{-1}(0) \cap S_{R}^{3}$ is not fibred. In the following theorem 2 we do not have any hypothesis on the value 0 , in particular 0 can be a critical value at infinity.

Theorem 2. Suppose that $c \neq 0$ is a critical value at infinity for f, then the multilink $K_{0}=f^{-1}(0) \cap S_{R}^{3}$ is not a fibred multilink.

We begin with definitions, the second part is devoted to the proof of theorem 1. We conclude with the proof of theorem 2.

1 Definitions

As in [EN], a multilink $L(\mathbf{m})\left(\mathbf{m}=\left(m_{1}, \ldots, m_{k}\right)\right)$ is a link having each component L_{i} weighted by the integer m_{i}.

The multilink $L(\mathbf{m})$ is a fibred multilink if there exists a differentiable fibration $\theta: S_{R}^{3} \backslash L \longrightarrow S^{1}$ such that m_{i} is the degree of the restriction of θ on a meridian of L_{i}. A fibre $\theta^{-1}(x)$ is a Seifert surface for the multilink. The link $K_{0}=f^{-1}(0) \cap S_{R}^{3}$ is a multilink, the weights being naturally given by the multiplicities of the factorial decomposition of f.

A fibred link is a fibred multilink having all its components weighted by +1 . Then θ is called an open book decomposition.

Next we give definitions and results about resolutions, see [LW]. Let n be the degree of f and F be the corresponding homogeneous polynomial with the same degree. The map $\tilde{f}: \mathbb{C} P^{2} \longrightarrow \mathbb{C} P^{1}, \tilde{f}(x: y: z)=\left(F(x, y, z): z^{n}\right)$ is not everywhere defined, nevertheless there exists a minimal composition of blowingups $\pi_{w}: \Sigma_{w} \longrightarrow \mathbb{C} P^{2}$ such that $\tilde{f} \circ \pi_{w}$ extends to a well-defined morphism ϕ_{w} from Σ_{w} to $\mathbb{C} P^{1}$. This is the weak resolution.

For an irreducible component D of $\pi_{w}^{-1}\left(L_{\infty}\right)\left(L_{\infty}\right.$ is the line of $\mathbb{C} P^{2}$ having the equation $(z=0)$), we distinguish three cases:

1. $\phi_{w}(D)=\infty$, we denote $D_{\infty}=\phi_{w}^{-1}(\infty)$.
2. $\phi_{w}(D)=\mathbb{C} P^{1}, D$ is a dicritical component, the restriction of ϕ_{w} to D is a ramified covering, the degree of D is the degree of this restriction. The divisor which contains all these components is the dicritical divisor $D_{\text {dic }}$.
3. $\phi_{w}(D)=c \in \mathbb{C}$, there is a finite number of such components, collected in $D_{\text {crit }}=D_{c_{1}} \cup \ldots \cup D_{c_{g}}$.

The irregular values at infinity for f are the values c_{1}, \ldots, c_{g} and the critical values of the map ϕ_{w} restricted to $D_{d i c}$; moreover each divisor $D_{c_{i}}$ is a disjoint union of bamboos.

We now increase the number of blowing-ups of π_{w} in a minimal way, in order to obtain $\pi_{p}: \Sigma_{p} \longrightarrow \mathbb{C} P^{2}$ and $\phi_{p}=\tilde{f} \circ \pi_{p}: \Sigma_{p} \longrightarrow \mathbb{C} P^{1}$ such that the fibre
$\phi_{p}^{-1}(0)$ cuts the divisor $D_{\text {dic }}$ transversally and is a normal crossing divisor. This is the partial resolution for the value $c=0$.

We continue with blowing-ups in order to obtain $\pi_{t}, \Sigma_{t}, \phi_{t}$ such that each fibre of ϕ_{t} cuts the divisor $D_{\text {dic }}$ transversally and all the fibres of ϕ_{t} are normal crossing divisors. This is the total resolution.

For the total resolution the values $c_{1}, \ldots, c_{g^{\prime}}$ coming from the components D of the new $D_{\text {crit }}$ with $\phi_{t}(D)=c_{i}$ are the critical values at infinity.

2 Milnor fibration at infinity

Until the end of this section, we suppose that the only irregular value at infinity for f can be the value 0 . Let $\phi=\phi_{t}$ coming from the total resolution. In Σ_{t} the sphere $\pi_{t}^{-1}\left(S_{R}^{3}\right)$ is diffeomorphic to the boundary S of a neighbourhood of $\pi_{t}^{-1}\left(L_{\infty}\right)$ (see [D]).

Instead of studying $f /|f|$ restricted to $S_{R}^{3} \backslash f^{-1}(0)$ we study $\phi /|\phi|$ restricted to $S \backslash \phi^{-1}(0)$. Let θ be the restriction of $\phi /|\phi|$ to $S \backslash \phi^{-1}(0)$. By changing the sphere $\pi_{t}^{-1}\left(S_{R}^{3}\right)$ into S we only know that θ is in the homotopy class of $f /|f|$.

As in [LMW] there is a correspondence between the irreducible components of $\pi_{t}^{-1}\left(L_{\infty}\right)$ and a Waldhausen decomposition of $S \backslash \phi^{-1}(0)$ into Seifert threemanifolds. We will prove that the restriction of θ to the Seifert manifold $\sigma(D)$ associated to any irreducible component D of $\pi_{t}^{-1}\left(L_{\infty}\right)$ is a fibration. If $D \subset$ $D_{\infty} \cup D_{0}$, the equations are similar to the local case; we thus have to look at what happens with the components of the dicritical divisor.

Lemma 1. The smooth points in $\pi_{t}^{-1}\left(L_{\infty}\right)$ of each dicritical component with non-empty intersection with $D_{\text {crit }}=D_{0}$ is an annulus.

In other words the intersection of D_{0} with each dicritical component is empty or reduced to a single point.

Proof. This is a consequence of the fact that above $\mathbb{C} P^{1} \backslash\{0, \infty\}, \phi$ is a regular covering.

With similar arguments, one can prove:
Lemma 2. Each dicritical component D with $D \cap D_{\text {crit }}=\varnothing$ is of degree 1.

2.1 Fibration on $\sigma(D)$ for $D \subset D_{\text {dic }}$

Let D be a dicritical component and let U be the simple points of D in $\pi_{t}^{-1}\left(L_{\infty}\right) \cup$ $\phi^{-1}(0)$. By lemmas 1 and 2 we know that U is an annulus and $\phi_{\mid U}: U \longrightarrow$ $\mathbb{C} P^{1} \backslash\{0, \infty\}$ is a regular covering of order d.

Let $u \in \mathbb{C}^{*}$ be a parametrisation of U. For each point of U we choose local coordinates (u, v) such that ϕ can be written $\phi(u, v)=u$. We choose S so that S is locally given by $(|v|=\varepsilon)$ where ε is a small positive real number.

With these facts one can calculate that the restriction of θ to the Seifert component $\sigma(D)$ associated to D is a fibration whose fibres consist of d annuli.

2.2 Fibration in a neighbourhood of a non-simple point

In a neighbourhood V of a non-simple point, i.e. a point belonging to a dicritical component D and another component $D^{\prime} \in \pi_{t}^{-1}\left(L_{\infty}\right) \cup \phi^{-1}(0), \phi$ is defined in appropriate local coordinates by $(u, v) \mapsto u^{d}$.

Let T be the tubular neighbourhood of $D \cap V$ given by $(|v| \leqslant \varepsilon) . \theta_{\mid T}$ defines a fibration whose fibres consist of d annuli:

$$
\theta^{-1}\left(e^{i \alpha}\right) \cap T=\left\{(u, v) \in T ;|v|=\varepsilon, u \neq 0 \text { and } u^{d} /|u|^{d}=e^{i \alpha}\right\}
$$

For T^{\prime} a tubular neighbourhood of $D^{\prime} \cap V$ given by $(|u| \leqslant \varepsilon)$, the fibre $\theta^{-1}\left(e^{i \alpha}\right) \cap T^{\prime}$ is also a union of d annuli.

These different pieces fit nicely on the torus $\partial T \cap \partial T^{\prime}$. So with a plumbing of T and T^{\prime}, θ is a fibration on V.

2.3 Fibration in a neighbourhood of the strict transform

Let F be an irreducible component of $\phi^{-1}(0) \backslash D_{0}$ (which corresponds to the affine set $\left.f^{-1}(0)\right)$. F can intersect D_{0} or $D_{\text {dic }}$. If $F \cap D_{0} \neq \varnothing$ then locally in a neighbourhood $V, \phi(u, v)=u^{p} v^{q}$ with $(v=0)$ is an equation for D_{0}. The associated component of the link is $\phi^{-1}(0) \cap S \cap V$. Then $\theta_{\mid V}$ is a fibration whose fibres consist of $\operatorname{gcd}(p, q)$ annuli:

$$
\theta^{-1}\left(e^{i \alpha}\right) \cap V=\left\{(u, v) \in V ;|v|=\varepsilon, u \neq 0 \text { and } u^{p} v^{q} /\left|u^{p} v^{q}\right|=e^{i \alpha}\right\}
$$

Moreover this fibration is a multilink fibration, because on a torus $D_{\delta}^{2} \times S_{\varepsilon}^{1} \backslash\{0\}$, the trace of the fibre at $v=c s t$ is p radii of the annulus $D_{\delta}^{2} \backslash\{0\} \times v$. If f is a reduced polynomial function then $p=1$ and θ is an open book decomposition.

Similarly, θ is still locally a fibration if $F \cap D_{d i c} \neq \varnothing$.
We now conclude by collecting and gluing previous results. $\phi /|\phi|$ is a fibration in a neighbourhood of $S \cap \phi^{-1}(0)$ and on all $V \cap S$ which cover $S \backslash \phi^{-1}(0)$, so $\phi /|\phi|: S \backslash \phi^{-1}(0) \longrightarrow S^{1}$ is a fibration. Furthermore with the discussion above $\phi /|\phi|$ is an open book decomposition or a multilink fibration depending on f being reduced or not.

3 Non-fibred multilinks

Under the hypotheses of theorem 2 and without loss of generality we suppose that $\{\lambda c$ with $\lambda<0\}$ does not contain critical values of f at infinity. The surface $\mathcal{F}=(f /|f|)^{-1}(-c /|c|) \cap S_{R}^{3}$ is a Seifert surface for the multilink $K_{0}=$ $f^{-1}(0) \cap S_{R}^{3}$. Moreover, for complex numbers ω with $0 \leqslant|\omega-c| \ll|c|$ the links $f^{-1}(\omega) \cap S_{R}^{3}$ do not cut \mathcal{F}.

We choose ω as a regular value at infinity. For the partial resolution $\phi=\phi_{p}$ at infinity for f and the value 0 , there exists one dicritical component with a valency at least 3 in $\pi_{p}^{-1}\left(L_{\infty}\right) \cup \phi^{-1}(0)$: let D be a dicritical component where
c is a critical value at infinity. If the intersection $\phi^{-1}(0) \cap D$ has more than two points or if there is a bamboo of D_{c} that cuts D then we can easily conclude. But no other case is possible because $\phi_{\mid D}$, with the critical values 0 and c, has more than two zeroes. So the manifold $\sigma(D)$ induces a Seifert manifold of the minimal decomposition of $S_{R}^{3} \backslash K_{0}$; by crossing this component, $f^{-1}(\omega)$ defines a virtual component of $M=S_{R}^{3} \backslash f^{-1}(0)$ (see [LMW]): that is to say a regular fibre of the minimal Waldhausen decomposition of the manifold M.

According to [EN, th. 11.2], since \mathcal{F} and a virtual component of M have empty intersection, K_{0} is not a fibred multilink, if we exclude the case where M is $S^{1} \times S^{1} \times[0,1]$. This case is studied in the following lemma.

Lemma 3. If the underlying link associated to $K_{0}=f^{-1}(0) \cap S_{R}^{3}$ is the Hopf link then $c \neq 0$ is a regular value at infinity for f.

Proof. We suppose first that f is a reduced polynomial function. Then K_{0} is the Hopf link, and since K_{0} is an iterated torus link around Neumann's multilink $L[\mathrm{~N}, \S 2]$, this multilink can only be the trivial knot or the Hopf link.

Case of L being the trivial knot: There is only one dicritical component. If f is not a primitive polynomial (i.e. with connected generic fibre) then with the use of the Stein factorisation, let $h \in \mathbb{C}[t]$ and let $g \in \mathbb{C}[x, y]$ be a primitive polynomial with $f=h \circ g$. By the Abhyankar-Moh theorem (see [A]), there exists an algebraic automorphism Θ of \mathbb{C}^{2} with $g \circ \Theta(x, y)=x$ and then $f \circ$ $\Theta(x, y)=h(x)$.

Let x_{1}, \ldots, x_{n} be the zeroes of $h ; x_{1} \times \mathbb{C}, \ldots, x_{n} \times \mathbb{C}$ are the solutions of $f \circ \Theta(x, y)=0$. Therefore the link K_{0} is a union of trivial knots with zero linking numbers, so K_{0} is not the Hopf link.

Case of L being the Hopf link: K_{0} and the multilink L are isotopic. On the one hand in the weak resolution for f, the restriction of $\phi=\phi_{w}$ to $D_{\text {dic }}$ cannot have the critical value 0 without a bamboo. If so, one component of K_{0} would be a true iterated torus knot around a component of L, in contradiction with the hypothesis. On the other hand, each component of the multilink L can be represented by a disc which crosses transversally the last component of each bamboo (start counting at the dicritical component). If there exists a bamboo for the value 0 , the component C of $\phi^{-1}(0) \backslash D_{0}$ with $C \cap D_{0} \neq \varnothing$ must be irreducible, reduced and cross D_{0} transversally at the last component; this configuration is excluded by lemma 8.24 of [MW]. So 0 is a regular value at infinity and since K_{0} is isotopic to L, all the dicritical components have degree one and there is no value having a bamboo, so c is a regular value at infinity for f.

If f is not reduced, let g be the reduced polynomial function associated to f. Then the link $g^{-1}(0) \cap S_{R}^{3}$ is the Hopf link and from the discussion above we know that 0 is a regular value at infinity for g. From the classification of regular algebraic annuli $[\mathrm{N}, \S 8]$, there exists an algebraic automorphism Θ of \mathbb{C}^{2} with $\Theta(0,0)=(0,0)$ such that $g \circ \Theta(x, y)=x y+\lambda, \lambda \in \mathbb{C}$. So $f \circ \Theta(x, y)=(x y+\lambda)^{l}$ if $\lambda \neq 0$ and $f \circ \Theta(x, y)=x^{p} y^{q}$ if $\lambda=0$. In both cases, c is a regular value at infinity for f.

In conclusion, whether 0 is a regular value at infinity or not, the multilink $K_{0}=f^{-1}(0) \cap S_{R}^{3}$ is not fibred when $c \neq 0$ is a critical value at infinity.

Acknowledgments

I thank Professor Françoise Michel for long discussions and for her many ideas.

References

[A] E. Artal-Bartolo, Une démonstration géométrique du théorème d'Abhyankar-Moh, J. reine angew. Math. 464 (1995), 97-108.
[D] A. Durfee, Neighborhoods of algebraic sets, Trans. Amer. Math. Soc. 276 (1983), 517-530.
[EN] D. Eisenbud and W. Neumann, Three-dimensional link theory and invariants of plane curve singularities, Ann. of Math. Stud. 110, Princeton Univ. Press (1985).
[LMW] D.T. Lê, F. Michel and C. Weber, Courbes polaires et topologie des courbes planes, Ann. scient. Éc. Norm. Sup. 24 (1991), 141-169.
[LW] D.T. Lê and C. Weber, A geometrical approach to the Jacobian conjecture, Kodai Math. J. 17 (1994), 374-381.
[MW] F. Michel and C. Weber, On the monodromies of a polynomial map from \mathbb{C}^{2} to \mathbb{C}, preprint (1998).
[NZ] A. Némethi and A. Zaharia, Milnor fibration at infinity, Indag. Math. N. S. 3 (1992), 323-335.
[N] W. Neumann, Complex algebraic plane curves via their links at infinity, Invent. Math. 98 (1989), 445-489.
[NR] W. Neumann and L. Rudolph, Unfoldings in knot theory, Math. Ann. 278 (1987), 409-439 and Corrigendum: Unfoldings in knot theory, Math. Ann. 282 (1988), 349-351.

Université Paul Sabatier Toulouse III, laboratoire Émile Picard, 118 route de Narbonne, 31062 Toulouse cedex 4, France; bodin@picard.ups-tlse.fr

