
INTEGRAL POINTS ON GENERIC FIBERS

ARNAUD BODIN

Abstract. Let P (x, y) be a rational polynomial. If the curve
(P (x, y) = k), k ∈ Q, is irreducible and admits an infinite num-
ber of points whose coordinates are integers, Siegel’s theorem im-
plies that the curve is rational. We deal with the case where k
is a generic value and prove, in the spirit of the Abhyankar-Moh-
Suzuki theorem, that there exists an algebraic automorphism send-
ing P (x, y) to the polynomial x or to x2 − `y2, ` ∈ N. Moreover
for such curves we give a sharp bound for the number of integral
points (x, y) with x and y bounded.

1. Introduction

Let P ∈ Q[x, y] be a non-constant polynomial and C = (P (x, y) =
0) ⊂ C2 be the corresponding algebraic curve. An old and famous
result is the following, [12]:

Theorem (Siegel’s theorem). Suppose that C is irreducible. If the num-
ber of integral points C ∩ Z2 is infinite then C is a rational curve.

Our main goal is to prove a stronger version of Siegel’s theorem for
curve defined by an equation C = (P (x, y) = k) where k is a “generic”
value. It is known that there exists a finite set B such that the topology
of the complex plane curve (P (x, y) = k) ⊂ C2 is independent of
k ∈ C \ B. We say that k ∈ C \ B is a generic value.

Theorem 1. Let P ∈ Q[x, y] and let k ∈ Q \ B be a generic value.
Suppose that the algebraic curve C = (P (x, y) = k) is irreducible. If C
contains an infinite number of integral points (m,n) ∈ Z2 then there
exists an algebraic automorphism Φ ∈ Aut A2

Q such that

P ◦ Φ(x, y) = x or P ◦ Φ(x, y) = α(x2 − `y2) + β,

where ` ∈ N∗ is a non-square and α ∈ Q∗, β ∈ Q.

We recall that an algebraic automorphism Φ ∈ Aut A2
Q is a map Φ :

Q2 −→ Q2 defined by a pair of polynomials Φ(X, Y ) = (φ1(X, Y ), φ2(X, Y )),
φ1(X, Y ), φ2(X,Y ) ∈ Q[X, Y ]; moreover it is invertible in the sense
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that there exists a pair of polynomials (ψ1(X,Y ), ψ2(X, Y )) such that
Φ(ψ1(X, Y ), ψ2(X, Y )) = (X, Y ). In particular the curve C = (P (x, y) =
k) is diffeomorphic to a line (x = 0), in which case the set B is empty
or to a hyperbola (x2 − dy2 = 1) in which case B is a singleton.

Theorem 1 can be seen as an arithmetic version of the Abhyankar-
Moh-Suzuki theorem [2] and in fact we use this result. It can also
be seen as a strong version, for generic values, of a result of Nguyen
Van Chau [8] concerning possible counter-examples to the Jacobian
conjecture.

Let us give a first example for which the theorem applies: let P (x, y) =
x − yd. The curve C = (x − yd = 0) has infinitely many integral
points of type (nd, n), n ∈ Z. And for the algebraic automorphism
Φ(x, y) = (x+yd, y) we have P ◦Φ(x, y) = x. In particular the curve C
is sent (by Φ−1) to the line (x = 0). As pointed out by Kevin Buzzard
the second case corresponds to Pell’s equation and a second example
for which the theorem applies is (x2 − 2y2 = 1): it admits an infinite
number of integral points. Of course a kind of reciprocal of Theorem 1
is true. Let Q1(x, y) = x, (resp. Q2(x, y) = x2 − `y2) and Φ ∈ Aut A2

Q
whose inverse Φ−1 has integral coefficients. If we set P1 = Q1 ◦Φ (resp.
P2 = Q2 ◦ Φ) then the curve (P1 = 0) (resp. (P2 = 1)) has infinitely
many integral points.

For non-generic values the result is not true, for example let P (x, y) =
x2 − y3 and C = (x2 − y3 = 0). The integral points (n3, n2), n ∈ Z
belong to C, but as C is singular it cannot be algebraically equivalent
to a line not to a hyperbola.

As an application, we draw the following corollary:

Corollary 2. Suppose that the hypotheses of Theorem 1 are true. For
infinitely many values k ∈ Q, the curve Ck = (P (x, y)−k = 0) contains
infinitely many integral points.

Let us sketch the proof of Theorem 1, we start with a curve C having
infinitely many integral points. By Siegel’s theorem C is a rational
curve. In fact original Siegel’s theorem says more: the curve has one
or two places at infinity. Firstly suppose that C has only one place at
infinity; as C is defined by (P (x, y) = k) for a generic k, C is a smooth
curve. Using the Abhyankar-Moh-Suzuki theorem [2], the curve can
be sent to a line by an algebraic automorphism. Next if C has two
places at infinity the curve can be sent to a hyperbola by a result of
Neumann [7]. Then we are able to explicitly write down equations for
the polynomials.
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We will apply Theorem 1 to obtain new bounds for the number of
integral points on algebraic curves. Let C = (P (x, y) = 0) be an
algebraic curve, and let d = degP . Let

N(C, B) = #
{
(x, y) ∈ C ∩ Z2 | |x| 6 B and |y| 6 B

}
.

An upper bound for N(C, B) is given by Bombieri and Pila in [4]; we
shall use results of Heath-Brown [6] that have been made explicit by
Walkowiak [13]:

Theorem. For all irreducible curves C of degree d and all B > 0:

(1) (Heath-Brown) N(C, B) 6 Cd,εB
1
d
+ε for some constant Cd,ε,

(2) (Walkowiak) N(C, B) 6 248d8 ln(B)5B
1
d .

The term B
1
d in the theorem above is sharp but the term ln(B)5

(corresponding to Bε) and especially the constant 248d8 are probably
far from being best possible.

For curves C as in Theorem 1 we will give sharp bounds for N(C, B).
First of all if C = (P = k) and the polynomial P is algebraically
equivalent to x2 − `y2 (i.e. there exists Φ ∈ Aut A2

Q such that P ◦
Φ(x, y) = x2−`y2) it is known [11, p. 135] that there exists C > 0 such
that

N(C, B) 6 C · ln(B).

Of course it implies N(C, B) 6 B
1
d for sufficiently large B and we shall

omit this case.
So if P is not algebraically equivalent to x2− `y2 then, as a corollary

of Theorem 1, such a curve C admits a parametrization by polynomi-
als: let (p(t), q(t)) be a parametrization of C with rational coefficients.
Moreover degP is equal to deg p or deg q (see [9, Lemma 2.1]). We
suppose degP = deg p and write

p(t) =
1

b
(adt

d + ad−1t
d−1 + · · ·+ a0)

where a0, . . . , ad, b ∈ Z, b > 0 and gcd(a0, . . . , ad, b) = 1.

Theorem 3. Let P ∈ Q[x, y] be a polynomial of degree d, let k ∈ Q\B
be a generic value. Suppose that C = (P (x, y) = k) is an irreducible
algebraic curve with infinitely many integral points. Then for all suffi-
ciently large B, the number N(C, B) of integral points on C bounded by
B verifies:

N(C, B) 6 2|ad|1−
1
d b

1
dB

1
d + 2,

where ad and b are defined above.
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2. Parametrization

2.1. Topology of polynomials. By a result of Thom, for a polyno-
mial P ∈ C[x, y] seen as a map P : C2 → C there exists a finite set
B ⊂ C such that

P : P−1(C \ B) −→ C \ B
is a topological locally trivial fibration. A value k /∈ B is a generic
value.

For example we have the following characterization of the generic
values: the Euler characteristic of the complex plane curve (P (x, y) =
k) ⊂ C2 is independent of k /∈ B and jumps if and only if k ∈ B.

Of course the image by P of a singular point of any curve (P (x, y) =
k), k ∈ C, is not a generic value, but for example P (x, y) = x(xy − 1)
has no singular points while B = {0}. Then if k /∈ B is a generic
value the plane algebraic curve C = (P (x, y) = k) ⊂ C2 does not have
singular points. Hence if C is connected then C is irreducible.

The connectedness of a generic fiber C is equivalent to P (x, y) being
non-composite [1]. We recall that P (x, y) is composite if there exist
h ∈ C[t], deg h > 2, and Q ∈ C[x, y] such that P (x, y) = h◦Q(x, y). By
[3, Theorem 7] we even can choose h and Q with rational coefficients.
Consequently it has been noticed by Janusz Gwozdziewicz that the
hypothesis “C is irreducible” in Theorem 1 can be removed. In that case
the conclusion becomes P ◦Φ(x, y) = h(x) or P ◦Φ(x, y) = h(x2− `y2),
where h ∈ Q[t] is a one-variable polynomial of positive degree.

2.2. Algebraic automorphisms. For K = Q or K = C an alge-
braic automorphism Φ ∈ Aut A2

K is a polynomial map Φ = (φ1, φ2) :
K2 −→ K2 (where φ1(X, Y ), φ2(X,Y ) ∈ K[X, Y ]) which is invertible
(that is to say there exists ψ1(X,Y ), ψ2(X, Y ) ∈ K[X,Y ] such that
Φ(ψ1(X, Y ), ψ2(X, Y )) = (X, Y )). The polynomials P,Q ∈ K[x, y] are
algebraically equivalent if there exists Φ ∈ Aut A2

K such that Q = P ◦Φ.
And in fact such P and Q have the same topological and algebraic
properties.

2.3. Siegel’s theorem and the topology of C. Siegel’s theorem
as stated in the introduction says that an irreducible curve having
infinitely many integral points is rational, that is to say its genus is
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zero. Another formulation is that the curve admits a parametrization
by rational fractions. In fact Siegel’s original theorem [12] gives more
information than the rationality of the curve.

Theorem 4 (Siegel’s theorem). Suppose that C is an irreducible curve
with infinitely many integral points; then C is a rational curve with one
or two places at infinity.

As a corollary we get in our situation:

Lemma 5. If k is a generic value and the curve C = (P (x, y) = k)
contains infinitely many integral points then C is homeomorphic to C
or to C∗.

In the language of algebraic geometry we could also say that C is
isomorphic, as a complex algebraic variety, to A1

C or to A1
C \ {0}.

Proof. As k is a generic value it implies that the curve C = (P (x, y) =
k) is smooth. If C has one place at infinity then C is homeomorphic to
P1

C \ {∞} ' C. If C has two places at infinity then C is homeomorphic
to P1

C \ {0,∞} ' C∗. �

In fact the homeomorphisms can be replaced by diffeomorphism and
even algebraic isomorphism. In Lemma 7 we will treat the case C and
in Lemma 9 the case C∗.

2.4. Case of C being homeomorphic to C. We recall the Abhyankar-
Moh-Suzuki theorem [1, 2, 10]:

Theorem 6.

(1) Let t 7→ (p(t), q(t)) be an injective polynomial map from C to
C2 such that the tangent vector (p′(t), q′(t)) is never (0, 0); then
deg p divides deg q, or deg q divides deg p.

(2) Let C = (P (x, y) = 0) ⊂ C2 be an algebraic plane curve, non-
singular and homeomorphic to C; then there exists an algebraic
automorphism Φ ∈ Aut A2

C such that

P ◦ Φ(x, y) = x.

The second statement is the usual form of the Abhyankar-Moh-
Suzuki theorem, it is in fact a consequence of the first (see the proof
below), for which a more general statement exists [2].

Lemma 7. Let the curve C = (P (x, y) = k) contain infinitely many
integral points, k being a generic value. If C is homeomorphic to C
then there exists Φ ∈ Aut A2

Q whose inverse has integral coefficients
such that P ◦ Φ(x, y) = ax+ b, a, b ∈ Q.
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Proof. The curve C is a rational curve with one place at infinity and
then admits a parametrization (p(t), q(t)) by polynomials with ratio-
nal coefficients. As k is a generic value, the curve C is smooth and
then (p′(t), q′(t)) never vanishes. Hence the existence of Φ ∈ Aut A2

C
comes from Theorem 6-(2). But here we ask the coefficients of Φ to
be rationals and those of Φ−1 to be integers: we will apply Theorem
6-(1). Hence deg p divides deg q or deg q divides deg p. Suppose that
δ = deg p > 0 divides deg q and write p(t) = aδt

δ + aδ−1t
δ−1 + · · · and

q(t) = b`δt
`δ + b`δ−1t

`δ−1 + · · · with ai, bi ∈ Q and ` > 1. Write aδ = α
β

and b`δ = α′

β′
.

Set the algebraic automorphism of Aut A2
Q,

Φ1(x, y) =

(
x,

1

α`β′
y − β`

α`

α′

β′
x`

)
,

its inverse is

Φ−1
1 (x, y) =

(
x, α`β′y + α′β`x`

)
,

whose coefficients are integers.
The composition with Φ1 yields a parametrization of (P−k)◦Φ1(x, y)

given by (p′(t), q′(t)) = Φ−1(p(t), q(t)) with q′(t) ∈ Q[t] and deg q′ <
deg q. We repeat this process until one of p(t) or q(t) is a constant the
other one being of degree 1 (this is possible because C has no singular
points). Then by the algebraic automorphism Φ = Φ1 ◦Φ2 ◦ · · · , whose
inverse has integral coefficients, we get (P − k) ◦ Φ(x, y) = ax + b,
a, b ∈ Q. �

As pointed out by the referee, a more direct proof of Lemma 7 can
be given: by Hilbert’s Theorem 90 there is no non-trivial Q-form of the
affine line so our curve isomorphic to A1

C is isomorphic to A1
Q over Q.

2.5. Case of C being homeomorphic to C∗. We will need the clas-
sification over C of polynomials with a generic fiber homeomorphic to
C∗, due to W. Neumann [7, §8].

Theorem 8. If C = (P (x, y) = k), k 6= 0 a generic value, is homeo-
morphic to C∗ then there exists an algebraic automorphism Φ ∈ Aut A2

C
such that

P ◦ Φ(x, y) = xpyq + β

or P ◦ Φ(x, y) = xp(yxr + ar−1x
r−1 + · · ·+ a0)

q + β,

with β ∈ C, p > 0, q > 0, gcd(p, q) = 1, r > 0, a0, . . . , ar−1 ∈ C and
a0 6= 0.
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We will prove that only some special polynomials of the first type
can have an infinite number of integral points.

The main result of this part is the following lemma.

Lemma 9. If C = (P (x, y) = k), k a generic value, is homeomorphic
to C∗ and has an infinite number of integral points, then there exists
Φ ∈ Aut A2

Q such that P ◦ Φ(x, y) = α(x2 − `y2) + β, ` ∈ Z, α ∈ Q∗,
β ∈ Q.

Proof. By Theorem 8 we know that the polynomial P − β has exactly
two absolute irreducible factors. For simplicity of the redaction we
suppose in the following that β = 0. Notice that the curve (P = 0) is
not the curve C.

First case : P is reducible in Q[x, y].
Once again we will prove that from the automorphism Φ of The-

orem 8, that a priori has complex coefficients, we can construct an
automorphism Ψ with rational coefficients and its inverse with integral
coefficients. We write P = αApBq the decomposition into irreducible
factors with A,B ∈ Q[x, y]. Again for simplicity we suppose α = 1.
We will decompose the proof according to the cases of Theorem 8. In
both cases we see that the curve (P = 0) has a non-singular irreducible
component homeomorphic to C (the one sent by Φ−1 to (x = 0)). This
component homeomorphic to C is either (A = 0) or (B = 0); say it
is (A = 0). Then, as A ∈ Q[x, y], by the version of Abhyankar-Moh-
Suzuki theorem used as in Lemma 7 above, there exists Ψ ∈ Aut A2

Q,
whose inverse has integral coefficients, such that: A ◦Ψ(x, y) = ax+ b,
this implies :

P ◦Ψ(x, y) = (ax+ b)pQ(x, y)q.

Sub-case P ◦ Φ(x, y) = xpyq.
Then (Q(x, y) = 0) is non-singular, homeomorphic to C and the in-

tersection multiplicity with the line (ax+b = 0) is 1. Then if (p(t), q(t))
is a polynomial parametrization of (Q(x, y) = 0) we have deg p = 1.
Then as in the proof of Lemma 7 by algebraic automorphisms of type
(x, y) 7→ (αx, βy − γx`) whose inverse have integral coefficients, we
can suppose that q(t) is a constant. Notice that such automorphisms
preserve vertical lines.

Then Q(x, y) becomes cy + d, c, d ∈ Q, while ax + b remains un-
changed. Then we have found Ψ′ ∈ Aut A2

Q whose inverse has integral
coefficients such that:

P ◦Ψ′(x, y) = (ax+ b)p(cy + d)q.

Sub-case P ◦ Φ(x, y) = xp(yxr + ar−1x
r−1 + · · ·+ a0)

q.
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P ◦Φ(x, y) = xp(yxr +ar−1x
r−1+ · · ·+a0)

q is algebraically equivalent
to P ◦ Ψ(x, y) = (ax + b)pQ(x, y)q by the algebraic automorphism
Φ◦Ψ−1. Moreover Φ◦Ψ−1 should send x to ax+b. Then Φ◦Ψ−1 is the
composition of algebraic automorphisms of type (x, y) 7→ (ax+b, y) and
(x, y) 7→ (αx, βy − γx`). This implies that the degree in the variable
y remains unchanged. Then degy Q(x, y) = degy(yx

r + ar−1x
r−1 +

· · · + a0) = 1. Then Q(x, y) = q1(x)y + q2(x). Due to the asymptotic
branches we have q1(x, y) = (ax+b)r. And by algebraic automorphisms
whose inverse have integral coefficients of type (x, y) 7→ (αx, βy− γx`)
we can suppose deg q2 < r. Then we have found Ψ′ ∈ Aut A2

Q with an
inverse having integral coefficients such that:

P ◦Ψ′(x, y) = (ax+ b)p(y(ax+ b)r + br−1x
r−1 + · · ·+ b0)

q,

b0, . . . , br−1 ∈ Q, b0 6= 0.
Conclusion for both sub-cases.
Now the curve (P ◦ Ψ′(x, y) = k) has a finite number of integral

points since the branches at infinity are asymptotic to horizontal or
vertical lines (with equation (ax+ b = 0), (cy+ d = 0) in the first case
and (ax + b = 0), (y = 0) in the second case ; they correspond to the
two points at infinity (0 : 1 : 0) and (1 : 0 : 0)). Now as Ψ′−1 has
integral coefficients, an integral point (m,n) ∈ (P (x, y) = k) ∩ Z2 is
sent to an integral point Ψ′−1(m,n) ∈ (P ◦Ψ′(x, y) = k)∩Z2 it implies
that C = (P (x, y) = k) also have a finite number of integral points.

Second case : P is irreducible in Q[x, y].
We still apply Theorem 8. Then by Lemma 10 below it implies

that there exist C,D ∈ Q[x, y], ` ∈ Z such that P = C2 − `D2. Then

P = (C−
√
`D)(C+

√
`D) is the decomposition into irreducible factors.

Sub-case P ◦ Φ(x, y) = xpyq.
Then by Lemma 10 we know that p = 1, q = 1. And equivalently

there exists Φ′ ∈ Aut A2
C such that P ◦Φ′(x, y) = (x−

√
`y)(x+

√
`y).

Then P ◦ Φ′(x, y) = (C2 − `D2) ◦ Φ′(x, y) = (x −
√
`y)(x +

√
`y). We

may suppose that (C −
√
`D) ◦Φ′(x, y) = (x−

√
`y) and (C +

√
`D) ◦

Φ′(x, y) = (x+
√
`y), by addition and subtraction we get C◦Φ′(x, y) = x

and D ◦ Φ′(x, y) = y. Then (CD) ◦ Φ′(x, y) = xy, with C,D ∈ Q[x, y].
As in the first case above we are now enable to find Ψ ∈ Aut A2

Q such
that C ◦ Ψ(x, y) = x, D ◦ Ψ(x, y) = y and CD ◦ Ψ(x, y) = xy. Now
P ◦Ψ(x, y) = (C2 − `D2) ◦Ψ(x, y) = x2 − `y2.

Sub-case P ◦ Φ(x, y) = xp(yxr + ar−1x
r−1 + · · ·+ a0)

q.
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Again p = 1, q = 1, and we may suppose that (C−
√
`D)◦Φ(x, y) =

x. We denote Q = y ◦ Φ−1(x, y) i.e. Q ◦ Φ(x, y) = y. Then

(C −
√
`D)(C +

√
`D) = P

= x(yxr + ar−1x
r−1 + · · ·+ a0) ◦ Φ−1(x, y)

= (C −
√
`D)

(
Q(C −

√
`D)r + · · ·

)
Then

(C +
√
`D) =

(
Q(C −

√
`D)r + · · ·

)
.

But as C,D ∈ Q[x, y] we have d = deg(C +
√
`D) = deg(C −

√
`D)

and we get d = degQ + rd. As r > 1 we get degQ = 0 which is in
contradiction with the definition of Q. Then this sub-case does not
occur. �

It remains to prove the following technical lemma used in the second
case above.

Lemma 10. Let P ∈ Q[x, y] such that P = αApBq, with gcd(p, q) = 1
and with α ∈ Q∗, A,B ∈ Q[x, y] monic and irreducible (that is to
say P admits exactly two absolute irreducible factors). Then either
A,B ∈ Q[x, y] or p = 1, q = 1 and there exist C,D ∈ Q[x, y], ` ∈ Z
non-square such that P = α(C2 − `D2).

The following proof is due to Pierre Dèbes.

Proof. Let ai,j ∈ Q be the coefficients of A. Let n be the degree of
the finite extension Q((ai,j))/Q. Then there exist exactly n distinct

conjugates of A. But for all σ ∈ Gal(Q/Q), σ(A) ∈ {A,B}. Then A
has at most two distinct algebraic conjugates. Thus n = 1 or n = 2. If
A /∈ Q[x, y] then there exists ai0,j0 /∈ Q and a σ0 ∈ Gal(Q/Q) such that
σ0(A) = B. Then n = 2 so that the extension Q((ai,j))/Q is quadratic.
Moreover p = q = 1. This implies the existence of a non-square integer
` such that A,B ∈ Q(

√
`)[x, y]. Now if we write A = C +

√
`D,

C,D ∈ Q[x, y] then its algebraic conjugate is B = C −
√
`D. �

Lemma 7 and Lemma 9 imply Theorem 1 of the introduction. We
now prove Corollary 2.

Proof. Suppose that the polynomial P (x, y) is algebraically equivalent
to the polynomial x. We have constructed an automorphism Φ ∈
Aut A2

Q such that: Φ(0, 0) = (0, 0), Φ−1 has integral coefficients and
P ◦ Φ(x, y) = ax + b, a, b ∈ Q. Let (mj, nj)j∈N ∈ Z2 integral points of
C = (P (x, y) = k). Then (m′

j, n
′
j) = Φ−1(mj, nj) ∈ Z2 are solutions of
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ax+ b = k (so that m′
j is independent of j). Then for each i ∈ N \ {0},

and all j ∈ N, (i · m′
j, i · n′j) is a solution of ax + b = ki, for some

ki ∈ Q. As Φ has coefficients in Q and Φ(0, 0) = (0, 0) there exists
an arithmetical sequence pi ∈ N, such that Φ(pi ·m′

j, pi · n′j) ∈ Z2. By
construction for each pi and all j ∈ N, P (Φ(pi ·m′

j, pi · n′j)) = kpi
.

If P is algebraically equivalent to α(x2−`y2)+β then a similar proof
holds as integral solutions (m′

j, n
′
j) to α(x2− `y2)+β = k give rises for

each i ∈ N\{0} to integral solutions (i·m′
j, i·n′j) to α(x2−`y2)+β = ki

for some ki ∈ Q. �

3. Number of integral points on polynomial curves

We want to estimate the number of integral points on a “polynomial
curve” parametrized by polynomial equations (p(t), q(t)). An integral
point of our generic –hence non-singular– curve C corresponds to a ra-
tional parameter t ∈ Q. It remains to count the number of parameters
t that yield to an integral value such that |p(t)| 6 B and |q(t)| 6 B.

Lemma 11. Let p(t) = adt
d + ad−1t

d−1 + · · · + a0 ∈ Q[t], ad > 0. Let
σ = −ad−1

dad
. There exists B0 > 0 such that for all B > B0, if we set

t+ =

(
B

ad

) 1
d

+ σ +
1

2
, t− = −

(
B

ad

) 1
d

+ σ − 1

2
,

then

for all t > t+, |p(t)| > B and for all t 6 t−, |p(t)| > B.

A similar result holds if ad < 0.

Proof. Set ε = 1
2

and write t = s + σ + ε; we look at the asymptotic
behavior for p(t) when t (and s) is large.

p(t) = p(s+ σ + ε)

= ad(s+ σ + ε)d + ad−1(s+ σ + ε)d−1 + · · ·
= ads

d + (dad(σ + ε) + ad−1)s
d−1 + o(sd−1)

= ads
d + dadεs

d−1 + o(sd−1).

For s =
(

B
ad

) 1
d

then ads
d = B we have

p(t+) = p(s+ σ + ε)

= B ·
(

1 + εd
1

s
+ o

(
1

s

))
.



INTEGRAL POINTS ON GENERIC FIBERS 11

Then for all sufficiently large B (such that s > 0 is large enough) we
have p(t+) > B

(
1 + εd

2
1
s

)
then p(t+) > B. Now the function t 7→ p(t)

is an increasing function for sufficiently large t. Then for all sufficiently
large B: if t > t+ then p(t) > p(t+) > B.

Now

p(t−) = p(−s+ σ − ε)

= (−1)dB ·
(

1 + εd
1

s
+ o

(
1

s

))
.

Then for all sufficiently large B, |p(t−)| > B. And again if t < t− then
|p(t)| > |p(t−)| > B. �

For a polynomial p(t) ∈ Q[t] in one variable we define:

M(p,B) = {t ∈ Q | p(t) ∈ Z and |p(t)| 6 B} .

Lemma 12. Let p(t) = 1
b
(adt

d + · · · + a0) ∈ Q[t], a0, . . . , ad, b ∈ Z,
gcd(a0, . . . , ad, b) = 1 and ad > 0, b > 0. There exists B0 > 0 such that
for all B > B0 we have

M(p,B) 6 2a
1− 1

d
d b

1
dB

1
d + 2.

Proof. If t = α
β
∈ Q with gcd(α, β) = 1 and p(α

β
) = k ∈ Z then it is

well-known that β divides ad. Then such t belongs to 1
ad

Z. Let B0 be

as in Lemma 11. Again by Lemma 11 if t > 0 and |p(t)| 6 B then

t < t+ =
(

B
ad/b

) 1
d

+ σ + 1
2
. If t < 0 and |p(t)| 6 B then |t| < |t−| =

−t− =
(

B
ad/b

) 1
d − σ + 1

2
. Now the cardinal of 1

ad
Z ∩ [t−, t+] is less than

ad|t+|+ ad|t−|+ 1 = 2ad

(
B

ad/b

) 1
d

+ σ − σ + 2 = 2ad

(
bB
ad

) 1
d

+ 2. �

Of course if p(t) is a monic polynomial with integral coefficients, i.e.

b = 1, ad = 1, then M(p,B) 6 2B
1
d + 2. For example if p(t) = td then

M(p,B) = 2B
1
d + 1. The following example shows that the bound of

Lemma 12 is the best one (at least for ad = 1).

Example 13. Let p(t) = td − 1 where d is an even number. There exist
infinitely many integers B such that:

M(p,B) > 2B
1
d + 1.

In fact for k any positive integer, set Bk = p(k) = kd − 1. Then
as d is even for all t ∈ [−k, k] we have td − 1 6 kd − 1 = Bk then

M(p,Bk) = 2k + 1 > 2(kd − 1)
1
d + 1 = 2B

1
d
k + 1.
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We apply these computations to the situation of our curves.
Let P (x, y) ∈ Q[x, y] be irreducible, let C = (P (x, y) = 0). Then

C is a polynomial curve if it admits a polynomial parametrization
(p(t), q(t)), p(t), q(t) ∈ Q[t]. Equivalently C is a rational curve with
one place at infinity. Moreover degP = max(deg p, deg q). We will
suppose degP = deg p and we write p(t) = 1

b
(adt

d + · · ·+a0) as before.

Lemma 14. Let C be a polynomial curve. Suppose degP = d = deg p,
p(t) = 1

b
(adt

d + · · · + a0). Then there exists B0 > 0 such that for all
B > B0:

N(C, B) 6 2a
1− 1

d
d b

1
dB

1
d +

(d− 1)(d− 2)

2
+ 2.

The term (d−1)(d−2)
2

comes from the number of singular points; for
non-singular curves we get the bound of Theorem 3. Moreover by
inspection of the proofs, for all ε > 0 we can change the bound to be

N(C, B) 6 2a
1− 1

d
d b

1
dB

1
d + (d−1)(d−2)

2
+ 1 + ε.

Proof. An algebraic curve of degree d must have less than (d−1)(d−2)
2

singular points, see [5, p.117]. The other integral points (p(t), q(t)) of
C correspond to rational parameters t, see (see [9] or [5, p.160]). Now
we apply Lemma 12. �

Example 13 gives a curve parametrized by (p(t), t) that proves that
the bound of Lemma 14 and Theorem 3 is asymptotically sharp.
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