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Abstract. We give a formula and an estimation for the number
of irreducible polynomials in two (or more) variables over a finite
field.

1. Introduction

Let p be a prime number and n > 1. For q = pn we denote by
Fq the finite field having q elements. The number of polynomials in
Fq[x] of degree (exactly) d is N1(d) = qd+1 − qd. The number I1(d) of
irreducible polynomials of degree d can be explicitly be computed with
the help of the Moebius inversion formula and was already known by
Gauss, see [8, p. 93]. Moreover we have an estimation for the proportion
of irreducible polynomials among all polynomials of degree d (see [8,
Ex. 26-27, p. 142]):

I1(d)

N1(d)
∼ 1

d
.

In particular irreducible polynomials in one variable become more
and more rare among the set of polynomials as the degree grows.

Surprisingly the situation is completely different if we look at irre-
ducibility for polynomials in two (or more) variables. We will prove
that most of the polynomials of degree d are irreducible and we give
an estimate for this proportion as d grows.

Here is the mathematical formulation : let N2(d) be the number of
polynomials in Fq[x, y] of degree exactly d and I2(d) the number of
irreducible polynomials.

Theorem.

1− I2(d)

N2(d)
∼ q + 1

qd
.

In particular it implies that I2(d)
N2(d)

→ 1 as d → +∞.
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For example if q = 2, the probability to choose an irreducible poly-
nomial among polynomials of degree d is about 1− 3

2d . For d = 10 we
find:

I2(10)

N2(10)
=

73534241823793715433

73750947497819242496
= 0.997061 . . .

that we approach by

1− 3

210
= 0.997070 . . .

The fact that in several variables almost all polynomials are irre-
ducible is due to L. Carlitz [3]. This work has been expanded to
the study of the distribution of irreducible polynomials according not
to the degree but to the bi-degree (where the bi-degree of P (x, y) is
(degx P, degy P )) by Carlitz himself [4] and by S. Cohen [5] for more
variables. More arithmetical stuff can be found in [6]. More recently
such computations have been applied to algorithms of factorization of
multivariate polynomials, see [9] and [7].

2. Number of polynomials

We first need to defined what is a normalized polynomial, let f(x, y) ∈
Fq[x, y] be a polynomial of degree exactly d :

f(x, y) = α0x
d +α1x

dy+α2x
d−2y2 + · · ·+αdy

d +terms of lower degree.

f is said to be normalized if the first non-zero term in the sequence
(α0, α1, α2, . . . , αd) is equal to 1. Of course any polynomial g can be
written g(x, y) = c ·f(x, y) where f is a normalized polynomial and c ∈
F∗

q. In particular it implies that the number of normalized polynomials
of degree d is the total number of polynomials of degree d divided by
q − 1 = #F∗

q.
The motivation is the following : we will need to factorize polyno-

mials, but unfortunately this factorization is not unique: for example
if g = g1 · g2 is the decomposition of g ∈ Fq[x, y] into a product of
irreducible factors, then g = (cg1) · (c−1g2) is another factorization, for
all c ∈ F∗

q. This phenomenon is problematic when we try to count the
number of reducible polynomials. However, now if f = f1 ·f2 is a factor-
ization with f, f1, f2 normalized polynomials, then this decomposition
is unique (up to permutation).

In the sequel of the text we will count normalized polynomials, nor-
malized irreducible polynomials,... To have the non-normalized results,
just multiply by q − 1.
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Lemma 1. The number of normalized polynomials of degree exactly d
in Fq[x, y] is

N(d) =

(
qd+1 − 1

q − 1

)
· q

d(d+1)
2 .

For example N(1) = q(q + 1), N(2) = q6−q3

q−1
.

Proof. The number of monomials of degree lower or equal to d is
(d+1)(d+2)

2
, hence the number of polynomials of degree less or equal

than d is

N ′(d) = q
(d+1)(d+2)

2 .

The number of non-zero homogeneous polynomials of degree d is

qd+1 − 1.

A polynomial of degree exactly d is the sum of a non-zero homogeneous
polynomial of degree d with a polynomials of degree < d. Hence the
number of polynomials of degree exactly d is:(

qd+1 − 1
)
·N ′(d− 1).

To get the number of normalized polynomials we divide by q − 1 and
obtain:

N(d) =

(
qd+1 − 1

q − 1

)
·N ′(d− 1) =

(
qd+1 − 1

q − 1

)
· q

d(d+1)
2 .

�

The gap between two consecutive numbers is given by the following
lemma.

Lemma 2.

• N(d)

N(d + 1)
=

1

qd+2
·
(

1− q − 1

qd+2 − 1

)
.

• In particular
N(d)

N(d + 1)
∼ 1

qd+2
.

We will need an upper bound for the product N(a) ·N(b).

Lemma 3.

(1) N(a) ·N(b) 6 N(a + b) for all a > 1, b > 1;
(2) N(a) ·N(b) 6 q3 ·N(a + b− 1) for all a > 1, b > 1;
(3) N(a) ·N(b) 6 q5 ·N(a + b− 2) for all a > 3, b > 3;
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Proof. First of all the function defined by M(d) = qd+1 − 1 verifies
M(a) ·M(b) 6 qM(a + b) for all a > 1, b > 1. Then

N(a) ·N(b)

N(a + b)
=

M(a) ·M(b)

M(a + b)
· 1

q − 1
· q

a(a+1)+b(b+1)−(a+b)(a+b+1)
2

6
1

q − 1
· q · q−ab =

1

q − 1
· q−ab+1

6
1

q − 1
6 1.

Similar calculus holds for the other bounds. �

3. A formula to compute the number of irreducible
polynomials

3.1. Notations. We denote by I(d) the number of normalized irre-
ducible polynomials of degree exactly d and by R(d) the number of
normalized reducible polynomials of degree exactly d. Of course we
have:

N(d) = I(d) + R(d).

We will decompose the set of polynomials according to the number of
irreducible factors. Let Sk(d) be the number of normalized polynomials
of degree exactly d having exactly k irreducible (maybe non-distinct)
factors. Of course

S1(d) = I(d)

and

S2(d) + · · ·+ Sd(d) = R(d).

3.2. Torsion product. Let (`1, . . . , `k) ∈ Nk such that

`i1 = · · · = `i1+α1−1︸ ︷︷ ︸
α1

< `i2 = · · · = `i2+α2−1︸ ︷︷ ︸
α2

< . . . < `ir = · · · = `k︸ ︷︷ ︸
αr

where i1 = 1.
We define the following product:

`1⊗`2⊗· · ·⊗`k =

(
`i1 + α1 − 1

α1

)
×
(

`i2 + α2 − 1

α2

)
×· · ·×

(
`ir + αr − 1

αr

)
.

In another language this is number of ways to choose k objects from
k boxes (combination with repetition), where the i-th box contains `i

objects. Moreover if `i = `j then boxes i and j contain the same objects
and if `i 6= `j they contain no common objects.
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Let us remark that:

`1 ⊗ · · · ⊗ `k 6 `1 × · · · × `k.

3.3. Partitions. Let P(k, d) be the set of partitions of d into exactly
k parts:

P(k, d) =
{
[d1, d2, . . . , dk] | 1 6 d1 6 d2 · · · 6 dk and d1+d2+· · ·+dk = d

}
.

Then the set of partitions of d is:

P(d) = P(1, d) ∪ P(2, d) ∪ . . . ∪ P(d, d).

For example if d = 5 we have: 5 = 1 + 4 = 2 + 3 = 1 + 1 + 3 =
1 + 2 + 2 = 1 + 1 + 1 + 2 = 1 + 1 + 1 + 1 + 1. Then

P(5) =
{
[5], [1, 4], [2, 3], [1, 1, 3], [1, 2, 2], [1, 1, 1, 2], [1, 1, 1, 1, 1]

}
.

Let P (d) = #P(d), the asymptotic behaviour of P (d) is given by a
formula of Hardy and Ramanujan:

P (d) ∼ 1

4d
√

3
exp

(
π

√
2d

3

)
.

We will need an upper bound, [1, p. 197], for all d > 1:

P (d) < exp

(
π

√
2d

3

)
.

3.4. Formula.

Lemma 4.

Sk(d) =
∑

[d1,...,dk]∈P(k,d)

I(d1)⊗ I(d2)⊗ · · · ⊗ I(dk).

Note that if k > 2 then all di that appear in this formula verify
di < d.

Proof. In fact a normalized polynomial f of degree d with exactly k
irreducible factors can be written f = f1×· · ·×fk. This decomposition
is unique (up to permutation) if we choose the fi to be irreducible and
normalized. If we denote by di the degree of fi we have d1 + · · · +
dk = d. Then to a factorization we associate a partition [d1, . . . , dk]
of d. And the number of polynomials having this partition is exactly
I(d1)⊗ · · · ⊗ I(dk). �
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d N(d) I(d) I(d)
N(d)

1− 3
2d

1 6 6 1 -0.5
2 56 35 0.625 0.25
3 960 694 0.72291. . . 0.625
4 31744 26089 0.82185. . . 0.8125
5 2064384 1862994 0.90244. . . 0.90625
6 266338304 253247715 0.95084. . . 0.95312. . .
7 68451041280 66799608630 0.97587. . . 0.97656. . .
8 35115652612096 34698378752226 0.98811. . . 0.98828. . .
9 35993612646875136 35781375988234520 0.99410. . . 0.99414. . .
10 73750947497819242496 73534241823793715433 0.99706. . . 0.99707. . .

Table 1. Number of irreducible polynomials in F2[x, y].

3.5. Algorithm. Lemma 4 provides an algorithm to compute I(d) re-
cursively.

• Compute I(1) by hand: I(1) = N(1) = q(q + 1).
• Assume that you have already computed I(2), . . . , I(d− 1).
• Calculate the sets of partitions P(k, d), 2 6 k 6 d.
• Apply the recursive formula

I(d) = N(d)−R(d) = N(d)−
d∑

k=2

Sk(d)

= N(d)−
d∑

k=2

∑
[d1,...,dk]∈P(k,d)

I(d1)⊗ I(d2)⊗ · · · ⊗ I(dk).

Contrary to the one variable case it appears in Table 1 that the
probability to choose an irreducible polynomials among polynomials of
degree d tends to 1 as d tends to infinity. Moreover the speed of this
convergence seems to be given by the formula of the introduction.

Some of these numbers appears in Sloane’s Encyclopedia of Integer
Sequences [10], for example the sequence (I(d))d = (6, 35, 694, . . .) that
gives the number of irreducible polynomials in F2[x, y] is referenced as
A115457. This algorithm is implemented (in any number of variables
and in any field) in a Maple sheet available on author’s web page [2].
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4. Asymptotic value for the number of irreducible
polynomials

Lemma 5. For a partition [d1, d2, . . . , dk] ∈ P(k, d) not equal to [1, d−
1] we have

I(d1)⊗ I(d2)⊗ · · · ⊗ I(dk) 6 q6 ·N(d− 2).

Proof. First remember from Section 3.2 that I(d1) ⊗ · · · ⊗ I(dk) 6
I(d1)× · · · × I(dk) 6 N(d1)× · · · ×N(dk).

For the partition [2, d− 2] it gives

I(2)⊗ I(d− 2) 6 N(2) ·N(d− 2) 6
q6 − q3

q − 1
·N(d− 2) 6 q6 ·N(d− 2).

For a partition of type [a, d − a], a > 3 then using Lemma 3-(3) it
gives

I(a)⊗ I(d− a) 6 N(a) ·N(d− a) 6 q5 ·N(d− 2).

For a partition of type [d1, . . . , dk] with k > 3, we apply twice Lemma
3-(2) and finish using Lemma 3-(1):

I(d1)⊗ · · · ⊗ I(dk) 6 N(d1)×N(d2)×N(d3)× · · · ×N(dk)

6 q3 ·N(d1 + d2 − 1) ·N(d3)× · · · ×N(dk)

6 q3 · q3 ·N(d1 + d2 + d3 − 2) ·N(d4)× · · · ×N(dk)

6 q6 ·N(d1 + d2 + d3 − 2 + d4 + · · ·+ dk)

6 q6 ·N(d− 2).

�

Lemma 5 above would enable us to prove that among reducible poly-
nomials those associated to the partition [1, d − 1] in number I(1) ⊗
I(d − 1) are predominant. This is the main idea for the proof of the
next Lemma.

Lemma 6. There exists d0 > 1 such that for all d > d0 we have

1− 1

d
6

R(d)

N(1) ·N(d− 1)
6 1 +

1

d
.

Proof. Upper bound.
R(d) = S2(d)+ · · ·+Sd(d) and each Sk(d) is the sum of I(d1)⊗· · ·⊗

I(dk) over all partition [d1, . . . , dk] ∈ P(k, d). By Lemma 5 and putting
apart the partition [1, d−1] we get that I(d1)⊗· · ·⊗I(dk) 6 q6·N(d−2).
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We recall that P (d) is number of partition of d: P (d) = #P(d) =
#(P(1, d) ∪ . . . ∪ P(k, d)), see Section 3.3. Then

R(d) 6 I(1)⊗ I(d− 1) + P (d) · q6 ·N(d− 2)

6 N(1) ·N(d− 1) + exp

(
π

√
2d

3

)
· q6 ·N(d− 2).

Then

R(d)

N(1) ·N(d− 1)
6 1 +

q6

N(1)
· exp

(
π

√
2d

3

)
· N(d− 2)

N(d− 1)

6 1 +
q6

q(q + 1)
· exp

(
π

√
2d

3

)
· 1

qd
.

Then there exists d′0 such that for all d > d′0

(∗) R(d)

N(1) ·N(d− 1)
6 1 +

1

d
.

Lower bound.
Among reducible polynomials of degree d there are polynomials of

type f1 · f2 where f1 is an irreducible polynomials of degree 1 and
f2 is irreducible of degree d − 1. This corresponds to the partition
[1, d − 1] ∈ P(2, d). The number of polynomials corresponding to the
partition [1, d− 1] is equal to I(1)⊗ I(d− 1) = N(1) · I(d− 1).

Then for d > d′0:

R(d) > I(1)⊗ I(d− 1)

= N(1) · I(d− 1)

= N(1)
(
N(d− 1)−R(d− 1)

)
> N(1) ·

(
N(d− 1)−N(1) ·

(
1 +

1

d− 1

)
·N(d− 2)

)
by (∗)

= N(1) ·N(d− 1) ·
(

1−N(1) ·
(

1 +
1

d− 1

)
· N(d− 2)

N(d− 1)

)
> N(1) ·N(d− 1) ·

(
1−N(1) ·

(
1 +

1

d− 1

)
· 1

qd

)
> N(1) ·N(d− 1) ·

(
1− 1

d

)
d > d0, for a d0 > d′0
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�

Proof of the main theorem. We are now ready to prove the theorem of
the introduction:

1− I(d)

N(d)
=

N(d)− I(d)

N(d)
=

R(d)

N(d)

=
R(d)

N(d− 1)
· N(d− 1)

N(d)

∼ N(1) · 1

qd+1
= q(q + 1) · 1

qd+1

∼ q + 1

qd
.

The first equivalence is obtained using Lemma 6 and Lemma 2. �

5. More variables

It is not hard to extend these results to polynomials in Fq[x1, . . . , xm],
with m > 2. In fact only results of section 2 have to be generalized,
while the rest of the paper is still valid.

First of all the number Nm(d) of normalized polynomials of degree
exactly d in Fq[x1, . . . , xm] involves some more advanced combinatorics:

Nm(d) =
1

q − 1
·
(
q(

m+d−1
m−1 ) − 1

)
· q(

m+d−1
m ).

We get that Nm(1) = qm+1−q
q−1

. Let Im(d) be the number of normalized

irreducible polynomials in Fq[x1, . . . , xm] of degree exactly d whose as-
ymptotic behaviour of Im(d) as d → +∞ is describe by the next result.

Theorem 7.

1− Im(d)

Nm(d)
∼ Nm(1) · Nm(d− 1)

Nm(d)
∼ qm+1 − q

q − 1
· 1

q(
m+d−1

m−1 )
.

For example in F2[x, y, z] the number I3(d) of irreducible polynomials
verifies:

1− I3(d)

N3(d)
∼ 14

2
(d+1)(d+2)

2

.
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