Irregular fibers of complex polynomials in two variables ## **Arnaud Bodin** December 2001 ## Introduction Let $f: \mathbb{C}^n \longrightarrow \mathbb{C}$ be a polynomial. The bifurcation set \mathcal{B} for f is the minimal set of points of \mathbb{C} such that $f: \mathbb{C}^n \setminus f^{-1}(\mathcal{B}) \longrightarrow \mathbb{C} \setminus \mathcal{B}$ is a locally trivial fibration. For $c \in \mathbb{C}$, we denote the fiber $f^{-1}(c)$ by F_c . The fiber F_c is irregular if c is in \mathcal{B} . If $s \notin \mathcal{B}$, then F_s is a generic fiber and is denoted by F_{gen} . The tube T_c for the value c is a neighborhood $f^{-1}(D_{\varepsilon}^2(c))$ of the fiber F_c , where $D_{\varepsilon}^2(c)$ stands for a 2-disk in \mathbb{C} , centered at c, of radius $\varepsilon \ll 1$. We assume that affine critical singularities are isolated. The value c is regular at infinity if there exists a compact set K of \mathbb{C}^n such that the restriction of f, $f: T_c \setminus K \longrightarrow D_{\varepsilon}^2(c)$ is a locally trivial fibration. Set n=2. Let $j_c: H_1(F_c) \longrightarrow H_1(T_c)$ be the morphism induced by the inclusion of F_c in T_c . The first part of this work is the study of this morphism. Let G_c the dual graph of $F_c = f^{-1}(c)$, and \bar{G}_c the dual graph of a compactification of the fiber F_c obtained by a resolution at infinity of f. The value c is acyclic if the dual graph G_c and some dual graphs $G_{c,P}$ obtained by compactification have the same number of cycles (see the full definition later). This is a combinatoric condition, for example if the fiber F_c is connected then c is acyclic if and only if $H_1(G_c)$ is isomorphic to $H_1(\bar{G}_c)$. Finally we define $j_{\infty}: H_1(F_c \setminus K) \longrightarrow H_1(T_c \setminus K)$ induced by inclusion. #### Theorem. - (A) j_c is injective if and only if F_c is connected and c is acyclic. - (B) j_c is surjective if and only if j_{∞} is surjective and c is acyclic. - (C) j_c is an isomorphism if and only if c is a regular value at infinity. - E. Artal-Bartolo, Pi. Cassou-Noguès and A. Dimca have proved the part (C) in [ACD] for polynomials with a connected fiber F_c . In fact we have a stronger result for the part (A) because the rank of the kernel of j_c is: rk Ker $j_c = n(F_c) 1 + \text{rk } H_1(\bar{G}_c) \text{rk } H_1(G_c)$ where $n(F_c)$ is the number of connected components of F_c . We apply these results to the study of neighborhoods of irregular fibers. Set $n \ge 2$. Let F_c° be the *smooth part* of F_c : F_c° is obtained by intersecting F_c with a large 2n-ball and cutting out a small neighborhood of the (isolated) singularities. Then F_c° can be embedded in F_{gen} . We study the following commutative diagram that links the three elements F_c° , F_{gen} , and T_c : $$H_q(F_c^{\circ}) \xrightarrow{j_c^{\circ}} H_q(T_c)$$ $$\downarrow_{\ell_c} \downarrow \qquad \qquad \downarrow_{k_c}$$ $$H_q(F_{qen})$$ where ℓ_c is the morphism induced in integral homology by the embedding; j_c° and k_c are induced by inclusions. The morphism k_c is well-known and $V_q(c) = \operatorname{Ker} k_c$ are vanishing cycles for the value c. Let h_c be the monodromy induced on $H_q(F_{gen})$ by a small circle around the value c. Then we prove that the image of ℓ_c are invariant cycles by h_c : $$\operatorname{Ker}(h_c - \operatorname{id}) = \ell_c(H_q(F_c^{\circ})).$$ This formula for the case n=2 has been obtained by F. Michel and C. Weber in [MW]. Finally we give a description of vanishing cycles with respect to eigenvalues of h_c for homology with complex coefficients. For $\lambda \neq 1$ and p a large integer the characteristic space $E_{\lambda} = \operatorname{Ker}(h_c - \lambda \operatorname{id})^p$ is composed of vanishing cycles for the value c. For $\lambda = 1$ the situation is different. If $K_q(c) = V_q(c) \cap \operatorname{Ker}(h_c - \operatorname{id})$ are invariant and vanishing cycles we have $$K_q(c) = \ell_c (\operatorname{Ker} j_c^{\circ}).$$ And for n=2 we get the formula $$\operatorname{rk} K_1(c) = r(F_c) - 1 + \operatorname{rk} H_1(\bar{G}_c).$$ In the view of [DN], vanishing cycles are important: the monodromy $h_{\infty}: H_1(F_{gen}) \longrightarrow H_1(F_{gen})$ induces by a large circle around the set \mathcal{B} and Broughton's decomposition $H_1(F_{gen}) = \bigoplus_{c \in \mathcal{B}} V_1(c)$ determine the monodromy representation $\pi_1(\mathbb{C}\backslash\mathcal{B}) \longrightarrow \operatorname{Aut} H_1(F_{gen})$. The former formula for rk $K_1(c)$ enables us to describe where the vanishing cycles are with respect to a decomposition of the homology of the generic fiber given by the resolution of singularities. # 1 Irregular fibers and tubes #### 1.1 Bifurcation set We can describe the bifurcation set \mathcal{B} as follows: let Sing = $\{z \in \mathbb{C}^n \mid \operatorname{grad}_f(z) = 0\}$ be the set of affine critical points and let $\mathcal{B}_{aff} = f(\operatorname{Sing})$ be the set of affine critical values. The set \mathcal{B}_{aff} is a subset of \mathcal{B} . The value $c \in \mathbb{C}$ is regular at infinity if there exists a disk D centered at c and a compact set K of \mathbb{C}^n with a locally trivial fibration $f: f^{-1}(D) \setminus K \longrightarrow D$. The non-regular values at infinity are the critical values at infinity and are collected in \mathcal{B}_{∞} . The finite set \mathcal{B} of critical values is now: $$\mathcal{B} = \mathcal{B}_{aff} \cup \mathcal{B}_{\infty}.$$ In this article we always assume that **affine singularities are isolated**, that is to say that Sing is an isolated set in \mathbb{C}^n . For n=2 this hypothesis implies that the generic fiber is a connected set. #### 1.2 Preleminaries In this paragraph n=2. The inclusion of F_c in T_c induces a morphism $j_c: H_1(F_c) \longrightarrow H_1(T_c)$. We firstly recall notations and results from [ACD]. Let denote $F_{aff} = F_c \cap B_R^4$ $(R \gg 1)$ and $F_{\infty} = \overline{F_c \setminus F_{aff}}$, thus $F_{aff} \cap F_{\infty} = K_c = f^{-1}(c) \cap S_R^3$ is the link at infinity for the value c. Similarly $T_{aff} = T_c \cap B_R^4$ and $T_{\infty} = \overline{T_c \setminus T_{aff}}$. We denote $j_{\infty} : H_1(F_{\infty}) \longrightarrow H_1(T_{\infty})$ the morphism induced by inclusion. The morphism $j_{aff} : H_1(F_{aff}) \longrightarrow H_1(T_{aff})$ is an isomorphism. $H_1(F_{aff} \cap F_{\infty})$ and $H_1(T_{aff} \cap T_{\infty})$ are isomorphic. Mayer-Vietoris exact sequences for the decompositions $F_c = F_{aff} \cup F_{\infty}$ and $T_c = T_{aff} \cup T_{\infty}$ give the commutative diagram (\mathcal{D}) : $$0 \longrightarrow H_1(F_{\infty} \cap F_{aff}) \xrightarrow{g} H_1(F_{\infty}) \oplus H_1(F_{aff}) \xrightarrow{h} H_1(F_c) \longrightarrow 0$$ $$\downarrow \cong \qquad \qquad \downarrow j_{\infty} \oplus j_{aff} \qquad \qquad \downarrow j_c$$ $$0 \longrightarrow H_1(T_{\infty} \cap T_{aff}) \xrightarrow{g'} H_1(T_{\infty}) \oplus H_1(T_{aff}) \xrightarrow{h'} H_1(T_c) \longrightarrow H_0(T_{\infty} \cap T_{aff}).$$ The 0 at the upper-right corner is provided by the injectivity of $H_0(F_{\infty} \cap F_{aff}) \longrightarrow H_0(F_{\infty})$ (F_c need not to be a connected set) hence $H_0(F_{\infty} \cap F_{aff}) \longrightarrow H_0(F_{\infty}) \oplus H_0(F_{aff})$ is injective. # 1.3 Resolution of singularities To compactify the situation, for n=2, we need resolution of singularities at infinity [LW]: \tilde{f} is the map coming from the homogenization of f; π is the minimal blow-up of some points on the line at infinity L_{∞} of $\mathbb{C}P^2$ in order to obtain a well-defined morphism $\phi_w: \Sigma_w \longrightarrow \mathbb{C}P^1$: this the weak resolution. We denote $\phi_w^{-1}(\infty)$ by D_{∞} , and let D_{dic} be the set of components D of $\pi_w^{-1}(L_{\infty})$ that verify $\phi_w(D) = \mathbb{C}P^1$. Such a D is a discritical component. The degree of a discritical component D is the degree of the branched covering $\phi_w: D \longrightarrow \mathbb{C}P^1$. For the weak resolution the divisor $\phi_w^{-1}(c) \cap \pi_w^{-1}(L_{\infty}), c \in \mathbb{C}$, is a union of bamboos (possibly empty) (a bamboo is a divisor whose dual graph is a linear tree). The set \mathcal{B}_{∞} is the set of values of ϕ_w on non-empty bamboos with the set of critical values of the restriction of ϕ_w to the discritical components. We can blow-up more points to obtain the total resolution, $\phi_t : \Sigma_t \longrightarrow \mathbb{C}P^1$, such that all fibers of ϕ_t are normal crossing divisors that intersect the dicritical components transversally; moreover we blow-up affine singularities. Then $D_{\infty} = \phi_t^{-1}(\infty)$ is the same as above and for $c \in \mathcal{B}$ we denote D_c the divisor $\phi_t^{-1}(c)$. The dual graph \bar{G}_c of D_c is obtained as follows: one vertex for each irreducible component of D_c and one edge between two vertices for one intersection of the corresponding components. A similar construction is done for D_{∞} , we know that \bar{G}_{∞} is a tree [LW]. The multiplicity of a component is the multiplicity of ϕ_t on this component. # 1.4 Study of j_{∞} See [ACD]. Let ϕ be the weak resolution map for f. Let denote by Dic_c the set of points P in the dicritical components, such that $\phi(P)=c$. To each $P\in\mathrm{Dic}_c$ is associated one, and only one, connected component T_P of T_∞ ; T_P is the place at infinity for P. We have $T_\infty=\coprod_{P\in\mathrm{Dic}_c}T_P$ and we set $F_P=T_P\cap F_\infty=T_P\cap F_c$ and $K_P=\partial F_P$, finally $n(F_P)$ denotes the number of connected components of F_P . Let \bar{F}_P be the strict transform of c by ϕ , intersected with T_P . The study of j_∞ follows from the study of $j_P:H_1(F_P)\longrightarrow H_1(T_P)$. Let \mathfrak{m}_P be the intersection multiplicity of \bar{F}_P with the divisor $\pi_m^{-1}(L_\infty)$ at P. Case of $P \in \bar{F}_P$. The group $H_1(T_P)$ is isomorphic to \mathbb{Z} and is generated by $[M_P]$, M_P being the boundary of a small disk with transversal intersection with the distriction component. Moreover if $F_P = \coprod_{i=1}^{n(F_P)} F_P^i$ then $j_P([F_P^i]) = j_P([K_P^i]) = \mathfrak{m}_P^i[M_P]$. Case of P being in a bamboo. The group $H_1(T_P)$ is also isomorphic to \mathbb{Z} and is generated by $[M_P]$, M_P being the boundary of a small disk, with transversal intersection with the last component of the bamboo. Then $j_P[F_P^i] = j_P[K_P^i] = \mathfrak{m}_P^i.\ell_i[M_P]$. The integer ℓ_i only depends of the position where F_P^i intersects the bamboo, moreover $\ell_i \geq 1$ and $\ell_i = 1$ if and only if F_P^i intersects the bamboo at the last component. For a computation of ℓ_i , refer to [ACD]. As a consequence j_P is injective if and only if $n(F_P) = 1$ and j_∞ is injective if and only if $n(F_P) = 1$ for all P in Dic_c . In fact the rank of the kernel of j_∞ is the sum of the ranks of the kernels of j_P then $$\operatorname{rk} \ker j_{\infty} = \sum_{P \in \operatorname{Dic}_c} (n(F_P) - 1).$$ Finally j_{∞} is surjective if and only if for all $P \in \text{Dic}_c$, j_P is surjective. # 1.5 Acyclicity The value c is acyclic if the morphism $\psi: H_0(T_\infty \cap T_{aff}) \longrightarrow H_0(T_\infty) \oplus H_0(T_{aff})$ given by the Mayer-Vietoris exact sequence is injective. Let give some interpretations of the acyclicity condition. - 1. The injectivity of ψ can be view as follows: two branches at infinity that intersect the same place at infinity have to be in different connected components of F_c . - 2. Let G_c be the dual graph of F_c (one vertex for an irreducible component of F_c , two vertices are joined by an edge if the corresponding irreducible components have non-empty intersection, if a component has auto-intersection it provides a loop) and let $G_{c,P}$ be the graph obtained from G_c by adding edges to vertices that correspond to the same place at infinity T_P . In other words c is acyclic if and only if there is no new cycles in $G_{c,P}$, that is to say $H_1(G_c) \cong H_1(G_{c,P})$ for all P in Dic_c . 3. Another interpretation is the following: c is acyclic if and only if the morphism h' of the diagram (\mathcal{D}) is surjective. This can be proved by the exact sequence: $$H_1(T_{\infty}) \oplus H_1(T_{aff}) \xrightarrow{h'} H_1(T_c) \xrightarrow{\varphi} H_0(T_{\infty} \cap T_{aff}) \xrightarrow{\psi} H_0(T_{\infty}) \oplus H_0(T_{aff}) \longrightarrow H_0(T_c).$$ 4. Let consider the above Mayer-Vietoris exact sequence in reduced homology, the morphism $\widetilde{\psi}:\widetilde{H}_0(T_\infty\cap T_{aff})\longrightarrow \widetilde{H}_0(T_\infty)\oplus \widetilde{H}_0(T_{aff})$ is surjective because $\widetilde{H}_0(T_c)=\{0\}$. Moreover $\widetilde{\psi}$ is injective if and only if ψ is injective. As $\widetilde{\psi}$ is surjective, $\widetilde{\psi}$ is injective if and only if $\mathrm{rk}\,\widetilde{H}_0(T_\infty\cap T_{aff})=\mathrm{rk}\,\widetilde{H}_0(T_\infty)+\mathrm{rk}\,\widetilde{H}_0(T_{aff})$, that is to say c is acyclic if and only if $$\sum_{P \in \text{Dic}_c} n(F_P) - 1 = \# \text{Dic}_c - 1 + n(F_c) - 1.$$ (*) This implies the lemma: **Lemma 1.** j_{∞} is injective $\iff F_c$ is a connected set and c is acyclic. Proof. If j_{∞} is injective then $n(F_P)=1$ for all P in Dic_c , then $H_0(T_{\infty}\cap T_{aff})\cong H_0(T_{\infty})$ and ψ is injective, hence c is acyclic and from equality (\star) , we have $n(F_c)=1$ i.e. F_c is a connected set. Conversely, if c is acyclic and $n(F_c)=1$ then equality (\star) gives $n(F_P)=1$ for all P in Dic_c , thus j_{∞} is injective. Let us define a stronger notion of acyclicity. Let \bar{G}_c be the dual graph of $\phi^{-1}(c)$. The graph \bar{G}_c can be obtained from G_c by adding edges between vertices that belong to the same place at infinity for all P in Dic_c . The value c is strongly acyclic if $H_1(\bar{G}_c) \cong H_1(G_c)$. Strong acyclicity implies acyclicity, but the converse can be false. However if F_c is a connected set (that is to say G_c is a connected graph) then both conditions are equivalent. This is implicitly expressed in the next lemma, which is just a result involving graphs. **Lemma 2.** $$\operatorname{rk} H_1(\bar{G}_c) - \operatorname{rk} H_1(G_c) = \sum_{P \in \operatorname{Dic}_c} (n(F_P) - 1) - (n(F_c) - 1).$$ #### 1.6 Surjectivity Part (B). j_c surjective $\iff j_{\infty}$ surjective and c acyclic. *Proof.* Let us suppose that j_c is surjective then a version of the five lemma applied to diagram (\mathcal{D}) proves that j_{∞} is surjective. As j_c and j_{∞} are surjective, diagram (\mathcal{D}) implies that $h': H_1(T_{\infty}) \oplus H_1(T_{aff}) \longrightarrow H_1(T_c)$ is surjective, that means that c is acyclic. Conversely if j_{∞} is surjective and c is acyclic then h' is surjective and diagram (\mathcal{D}) implies that j_c is surjective. # 1.7 Injectivity **Part** (A). j_c is injective $\iff F_c$ is a connected set and c is acyclic. It follows from lemma 1 and from the next lemma. **Lemma 3.** j_c injective $\iff j_{\infty}$ injective. Moreover the rank of the kernel is: $$\begin{aligned} \operatorname{rk} \ker j_c &= \operatorname{rk} \ker j_\infty = \sum_{P \in \operatorname{Dic}_c} \left(n(F_P) - 1 \right) \\ &= n(F_c) - 1 + \operatorname{rk} H_1(\bar{G}_c) - \operatorname{rk} H_1(G_c). \end{aligned}$$ *Proof.* The first part of this lemma can be proved by a version of the five lemma. However we shall only prove the equality of the ranks of $\ker j_c$ and $\ker j_\infty$. It will imply the lemma because we already know that $\operatorname{rk} \ker j_\infty = \sum_{P \in \operatorname{Dic}_c} \left(n(F_P) - 1 \right)$ and from lemma 2 we then have $\operatorname{rk} \ker j_\infty = n(F_c) - 1 + \operatorname{rk} H_1(\bar{G}_c) - \operatorname{rk} H_1(G_c)$. The study of the morphism $j_c: H_1(F_c) \longrightarrow H_1(T_c)$ is equivalent to the study of the morphism $H_1(T_{aff}) \longrightarrow H_1(T_c)$ induced by inclusion that, by abuse, will also be denoted by j_c . To see this, it suffices to remark that F_c is obtained from $F_{aff} = F_c \cap B_R^4$ by gluing $F_c \cap S_R^3 \times [0, +\infty[$ to its boundary $F_c \cap S_R^3$. Then the morphism $H_1(F_{aff}) \longrightarrow H_1(F_c)$ induced by inclusion is an isomorphism; finally $j_{aff}: H_1(F_{aff}) \longrightarrow H_1(T_{aff})$ is also an isomorphism. The long exact sequence for the pair (T_c, T_{aff}) is: $$H_2(T_c) \longrightarrow H_2(T_c, T_{aff}) \longrightarrow H_1(T_{aff}) \xrightarrow{j_c} H_1(T_c)$$ but $H_2(T_c)=0$ (see [ACD] for example) then the rank of $\ker j_c$ is the rank of $H_2(T_c,T_{aff})$. On the other hand, the study of $j_\infty:H_1(F_\infty)\longrightarrow H_1(T_\infty)$ is the same as the study of $H_1(\partial T_\infty)\longrightarrow H_1(T_\infty)$ induced by inclusion (and denoted by j_∞) because the morphisms $H_1(\partial F_\infty)\longrightarrow H_1(F_\infty)$ and $H_1(\partial F_\infty)\longrightarrow H_1(\partial T_\infty)$ induced by inclusions are isomorphisms. The long exact sequence for $(T_\infty,\partial T_\infty)$ is: $$H_2(T_\infty) \longrightarrow H_2(T_\infty, \partial T_\infty) \longrightarrow H_1(\partial T_\infty) \xrightarrow{j_\infty} H_1(T_\infty).$$ As $H_2(T_{\infty}) = 0$ (see [ACD]), then the rank of ker j_{∞} is the same as $H_2(T_{\infty}, \partial T_{\infty})$. Finally the groups $H_2(T_{\infty}, \partial T_{\infty})$ and $H_2(T_c, T_{aff})$ are isomorphic by excision, and then the ranks of ker j_c and of ker j_{∞} are equal. That completes the proof. #### 1.8 Bijectivity Part (C). j_c is an isomorphism $\iff c \notin \mathcal{B}_{\infty}$ Proof. If $c \notin \mathcal{B}_{\infty}$, then the isomorphism $j_{aff}: H_1(F_{aff}) \longrightarrow H_1(T_{aff})$ implies that j_c is an isomorphism. Let suppose that c is a critical value at infinity and that j_c is injective. We have to prove that j_c is not surjective. As j_c is injective then by lemma 3, j_{∞} is injective. By the part (B) it suffices to prove that j_{∞} is not surjective. Let P be a point of Dic_c that provides irregularity at infinity for the value c, then $n(F_P) = 1$ because j_{∞} is injective. Let us prove that the morphism j_P is not surjective. For the case of $P \in \bar{F}_P$, the intersection multiplicity \mathfrak{m}_P is greater than 1, then j_P is not surjective. For the second case, in which P belongs to a bamboo, then $\mathfrak{m}_P.\ell_i > 1$ except for the situation where only one strict transform intersects the bamboo at the last component. This is exactly the situation excluded by the lemma "bamboo extremity fiber" of [MW]. Hence j_∞ is not surjective and j_c is not an isomorphism. # 1.9 Examples We apply the results to two classical examples. **Broughton polynomial.** Let f(x,y) = x(xy+1), then $\mathcal{B}_{aff} = \emptyset$, $\mathcal{B} = \mathcal{B}_{\infty} = \{0\}$. Then for $c \neq 0$, j_c is an isomorphism. The value 0 is acyclic since $H_1(G_0) \cong H_1(\bar{G}_0)$. The fiber F_0 is not connected hence j_0 is not injective. As the new component of \bar{G}_0 is of multiplicity 1 the corresponding morphism j_{∞} is surjective, hence j_0 is surjective. **Briançon polynomial.** Let $f(x,y) = yp^3 + p^2s + a_1ps + a_0s$ with s = xy + 1, p = x(xy + 1) + 1, $a_1 = -\frac{5}{3}$, $a_0 = -\frac{1}{3}$. The bifurcation set is $\mathcal{B} = \mathcal{B}_{\infty} = \{0, c = -\frac{16}{9}\}$, moreover all fibers are smooth and irreducible. The value 0 is not acyclic then j_0 is neither injective nor surjective (but j_{∞} is surjective). The value c is acyclic, and F_c is connected (since irreducible) then j_c is injective. The morphism j_c is not surjective: j_{∞} is not surjective because the compactification of F_c does not intersect the bamboo at the last component. # 2 Situation around an irregular fiber For $f: \mathbb{C}^n \longrightarrow \mathbb{C}$ we study the neighborood of an irregular fiber. # 2.1 Smooth part of F_c Let fix a value $c \in \mathbb{C}$ and let B_R^{2n} be a large closed ball $(R \gg 1)$. Let $B_1^{2n}, \ldots, B_p^{2n}$ be small open balls around the singular points (which are supposed to be isolated) of F_c : $F_c \cap \text{Sing.}$ We denote $B_1^{2n} \cup \ldots \cup B_p^{2n}$ by B_{\cup} . Then the smooth part of F_c is $$F_c^{\circ} = F_c \cap B_R^{2n} \setminus B_{\cup}.$$ It is possible to embed F_c° in the generic fiber F_{gen} (see [MW] and [NN]). We now explain the construction of this embedding by W. Neumann and P. Norbury. As F_c has transversal intersection with the balls of B_{\cup} and with B_R^{2n} , then there exists a small disk $D_{\varepsilon}^2(c)$ such that for all s in this disk, F_s has transversal intersection with these balls. According to Ehresmann fibration theorem, f induces a locally trivial fibration $$f_{\mid}: f^{-1}(D_{\varepsilon}^{2}(c)) \cap B_{R}^{2n} \setminus B_{\cup} \longrightarrow D_{\varepsilon}^{2}(c).$$ In fact, as $D_{\varepsilon}^2(c)$ is null homotopic, this fibration is trivial. Hence $F_c^{\circ} \times D_{\varepsilon}^2(c)$ is diffeomorphic to $f^{-1}(D_{\varepsilon}^2(c)) \cap B_R^{2n} \setminus B_{\cup}$. That provides an embedding of F_c° in F_s for all s in $D_{\varepsilon}^2(c)$; and for such a s with $s \neq c$, F_s is a generic fiber. The morphism induced in homology by this embedding is denoted by ℓ_c . Let j_c° be the morphism induced by the inclusion of F_c° in $T_c = f^{-1}(D_{\varepsilon}^2(c))$. Similarly k_c denotes the morphism induced by the inclusion of the generic fiber $F_{gen} = F_s$ (for $s \in D_{\varepsilon}^2(c)$, $s \neq c$) in T_c . As all morphisms are induced by natural maps we have the lemma: #### Lemma 4. The following diagram commutes: $$H_q(F_c^{\circ}) \xrightarrow{j_c^{\circ}} H_q(T_c) .$$ $$\downarrow_{\ell_c} \qquad \qquad \downarrow_{k_c}$$ $$H_q(F_{qen})$$ #### 2.2 Invariant cycles by h_c Invariant cycles by the monodromy h_c can be recovered by the following property. #### Proposition 5. $$\operatorname{Ker}(h_c - \operatorname{id}) = \ell_c(H_q(F_c^{\circ})).$$ For n=2, there is a similar formula in [MW], even for non-isolated singularities. *Proof.* The proof uses a commutative diagram due to W. Neumann and P. Norbury [NN]: The morphism i is the inclusion and ψ is an isomorphism, so $\operatorname{Ker}(h_c - \operatorname{id})$ equals $\operatorname{Ker} \varphi$. The long exact sequence for the pair (F_{qen}, F_c°) is: $$\cdots \longrightarrow H_q(F_c^{\circ}) \xrightarrow{\ell_c} H_q(F_{gen}) \xrightarrow{\varphi} H_q(F_{gen}, F_c^{\circ}) \longrightarrow \cdots$$ So $\operatorname{Im} \ell_c = \operatorname{Ker} \varphi = \operatorname{Ker} (h_c - \operatorname{id}).$ We are able to applicate this result to the calculus of the rank of $\operatorname{Ker}(h_c - \operatorname{id})$ for n = 2. Let denote the number of irreducible components in F_c by $r(F_c)$, and let Sing_c be $\operatorname{Sing} \cap F_c$: the affine singularities on F_c . Then $H_2(F_{gen}, F_c^{\circ})$ has rank the cardinal of Sing_c which is also the rank of $\operatorname{Ker} \ell_c$. Moreover $\operatorname{rk} H_1(F_c^{\circ}) = r(F_c) - \chi(F_c) + \# \operatorname{Sing}_c$. $$\operatorname{rk} \operatorname{Ker} (h_c - \operatorname{id}) = \operatorname{rk} \operatorname{Im} \ell_c$$ $$= \operatorname{rk} H_1(F_c^{\circ}) - \operatorname{rk} \operatorname{Ker} \ell_c$$ $$= r(F_c) - \chi(F_c) + \# \operatorname{Sing}_c - \# \operatorname{Sing}_c$$ $$= r(F_c) - \chi(F_c).$$ Remark. We obtain the following fact (see [MW]): if the fiber F_c ($c \in \mathcal{B}$) is irreducible then $h_c \neq \text{id}$. The proof is as follows: if $r(F_c) = 1$ and $h_c = \text{id}$ then from one hand $\text{rk Ker}(h_c - \text{id}) = \text{rk } H_1(F_{gen}) = 1 - \chi(F_{gen})$ and from the other hand $\text{rk Ker}(h_c - \text{id}) = 1 - \chi(F_c)$; thus $\chi(F_c) = \chi(F_{gen})$ which is absurd for c in \mathcal{B} by Suzuki formula. # 2.3 Vanishing cycles Now and until the end of this paper homology is homology with complex coefficients. Vanishing cycles for eigenvalues $\lambda \neq 1$. Let E_{λ} be the space $E_{\lambda} = \operatorname{Ker}(h_c - \lambda \operatorname{id})^p$ for a large integer p. **Lemma 6.** If $\lambda \neq 1$ then $E_{\lambda} \subset V_q(c)$. *Proof.* If $\sigma \in H_q(F_{gen})$ then $h_c(\sigma) - \sigma \in V_q(c)$. This is just the fact that the cycle $h_c(\sigma) - \sigma$ corresponds to the boundary of a "tube" defined by the action of the geometrical monodromy. We remark this fact can be generalized for $j \geq 1$ to $$h_c^j(\sigma) - \sigma \in V_q(c).$$ Let p be an integer that defines E_{λ} , then for $\sigma \in E_{\lambda}$: $$0 = (h_c - \lambda \operatorname{id})^p(\sigma) = \sum_{j=0}^p \binom{p}{j} (-\lambda)^{p-j} h_c^j(\sigma)$$ $$= \sum_{j=0}^p \binom{p}{j} (-\lambda)^{p-j} (h_c^j(\sigma) - \sigma) + \sum_{j=0}^p \binom{p}{j} (-\lambda)^{p-j} \sigma$$ $$= \sum_{j=0}^p \binom{p}{j} (-\lambda)^{p-j} (h_c^j(\sigma) - \sigma) + (1-\lambda)^p \sigma.$$ Each $h_c^j(\sigma) - \sigma$ is in $V_q(c)$, and a sum of such elements is also in $V_q(c)$, then $(1-\lambda)^p \sigma \in V_q(c)$. As $\lambda \neq 1$, then $\sigma \in V_q(c)$. Vanishing cycles for the eigenvalue $\lambda = 1$. We study what happens for cycles associated to the eigenvalue 1. Let recall that vanishing cycles $V_q(c) = \operatorname{Ker} k_c$ for the value c, are cycles that "disappear" when the generic fiber tends to the fiber F_c . Hence cycles that will not vanish are cycles that already exist in F_c . From the former paragraph these cycles are associated to the eigenvalue 1. Let (τ_1, \ldots, τ_p) be a family of $H_q(F_{qen})$ such that the matrix of h_c in this family is: $$\begin{pmatrix} 1 & 1 & & & & (0) \\ & 1 & 1 & & & \\ & & 1 & \ddots & \\ & & & & \ddots & 1 \\ & & & & & 1 \end{pmatrix}.$$ Then, the cycles $\tau_1, \ldots, \tau_{p-1}$ are vanishing cycles. It is a simple consequence of the fact that $h_c(\sigma) - \sigma \in V_q(c)$, because for $i = 1, \ldots, p-1$, we have $h(\tau_{i+1}) - \tau_{i+1} = \tau_i$, and then τ_i is a vanishing cycle. It remains the study of the cycle τ_p and the particular case of Jordan blocks (1) of size 1×1 . We will start with the second part. Vanishing and invariant cycles. Let $K_q(c)$ be invariant and vanishing cycles for the value $c: K_q(c) = \operatorname{Ker}(h_c - \operatorname{id}) \cap V_q(c)$. Let us remark that the space $K_q(c) \oplus \bigoplus_{c' \neq c} V_q(c')$ is not equal to $\operatorname{Ker}(h_c - \operatorname{id})$. But equality holds in cohomology. **Lemma 7.** $K_q(c) = \ell_c(\operatorname{Ker} j_c^{\circ}).$ This lemma just follows from the description of invariant cycles (proposition 5) and from the diagram of lemma 4. For n = 2 we can calculate the dimension of $K_1(c)$. **Proposition 8.** For n = 2, rk $K_1(c) = r(F_c) - 1 + \text{rk } H_1(\bar{G}_c)$. *Proof.* The proof will be clear after the following remarks: - 1. $K_1(c) = \ell_c(\operatorname{Ker} j_c^{\circ})$, by lemma 7. - 2. $j_c^{\circ} = j_c \circ i_c$ with $i_c : H_1(F_c^{\circ}) \longrightarrow H_1(F_c)$ the morphism induced by inclusion. It is consequence of the commutative diagram: $$H_1(F_c)$$ $$\downarrow_{i_c} \qquad \downarrow_{j_c}$$ $$H_1(F_c^{\circ}) \xrightarrow{j_c^{\circ}} H_1(T_c)$$ - 3. $\operatorname{rk} \operatorname{Ker} j_c^{\circ} = \operatorname{rk} \operatorname{Ker} i_c + \operatorname{rk} \operatorname{Ker} j_c \cap \operatorname{Im} i_c$, which is general formula for the kernel of the composition of morphisms. - 4. Ker $j_c \cap \text{Im } i_c = \text{Ker } j_c$, because cycles of $H_1(F_c)$ that do not belong to $\text{Im } i_c$ are cycles corresponding to $H_1(G_c)$, so they already exist in F_c and are not vanishing cycles. - 5. $\operatorname{rk} \operatorname{Ker} i_c = \sum_{z \in \operatorname{Sing}_c} r(F_{c,z})$, where $F_{c,z}$ denotes the germ of the curve F_c at z. - 6. rk Ker $j_c = \text{rk Ker } j_\infty = \sum_{P \in \text{Dic}_c} (n(F_P) 1) = n(F_c) + \text{rk } H_1(\bar{G}_c) \text{rk}(G_c)$, it has been proved in lemma 3. - 7. $r(F_c) + \operatorname{rk} H_1(G_c) = n(F_c) + \sum_{z \in \operatorname{Sing}_c} (r(F_{c,z}) 1)$. This a general formula for the graph G_c , the number of vertices of G_c is $r(F_c)$, the number of connected components is $n(F_c)$, the number of loops is $\operatorname{rk} H_1(G_c)$ and the number of edges for a vertex that correspond to an irreducible component F_{irr} of F_c is: $\sum_{z \in F_{irr}} (r(F_{irr,z}) 1)$. - 8. $\operatorname{rk} K_1(c) = \operatorname{rk} \operatorname{Ker} j_c^{\circ} \# \operatorname{Sing}_c$ because $\operatorname{Ker} i_c$ is a subspace of $\operatorname{Ker} \ell_c$ so $\operatorname{rk} K_1(c) = \operatorname{rk} \operatorname{Ker} j_c^{\circ} \operatorname{rk} \operatorname{Ker} \ell_c$ and the dimension of $\operatorname{Ker} \ell_c$ is $\# \operatorname{Sing}_c$ (see paragraph 2.2). We complete the proof: $$\operatorname{rk} K_{1}(c) = \operatorname{rk} \ell_{c}(\operatorname{Ker} j_{c}^{\circ}) \tag{1}$$ $$= \operatorname{rk} \operatorname{Ker} j_{c}^{\circ} - \operatorname{rk} \operatorname{Ker} \ell_{c} \tag{8}$$ $$= \operatorname{rk} \operatorname{Ker} j_{c} \circ i_{c} - \# \operatorname{Sing}_{c} \tag{2} \text{ and (8)}$$ $$= \operatorname{rk} \operatorname{Ker} i_{c} + \operatorname{rk} \operatorname{Ker} j_{c} \cap \operatorname{Im} i_{c} - \# \operatorname{Sing}_{c} \tag{3}$$ $$= \operatorname{rk} \operatorname{Ker} i_{c} - \# \operatorname{Sing}_{c} + \operatorname{rk} \operatorname{Ker} j_{c} \tag{4}$$ $$= \sum_{z \in \operatorname{Sing}_{c}} (r(F_{c,z}) - 1) + n(F_{c}) + \operatorname{rk} H_{1}(\bar{G}_{c}) - \operatorname{rk}(G_{c}) \tag{5} \text{ and (6)}$$ $$= r(F_{c}) - 1 + \operatorname{rk} H_{1}(\bar{G}_{c}). \tag{7}$$ **Filtration.** Let ϕ be the map provided by the total resolution of f. The divisor $\phi^{-1}(c)$ is denoted by $D = \sum_i m_i D_i$ where m_i stands for the multiplicity of D_i . We associate to D_i a part of the generic fiber denoted by F_i . We briefly recall this construction (see [MW]), let $V = \phi^{-1}(D_{\varepsilon}^2(c))$ be a tubular neighborhood of D, we will identify the generic fiber F_{gen} with $\phi^{-1}(s) \setminus \pi^{-1}(L_{\infty})$ for a generic value $s \in \partial D_{\varepsilon}^2(c)$, π is the blow-up. There is a natural deformation retraction $R: V \longrightarrow D$, and we set $F_i = R^{-1}(D_i) \cap F_{gen}$. The filtration of the homology of the generic fiber is the sequence of inclusions: $$W_{-1} \subset W_0 \subset W_1 \subset W_2 = H_1(F_{gen}).$$ with - W_{-1} : the boundary cycles, that is to say, if \bar{F}_{gen} is the compactification of F_{gen} and $\iota_*: H_1(F_{gen}) \longrightarrow H_1(\bar{F}_{gen})$ is induced by inclusion then $W_{-1} = \operatorname{Ker} \iota_*$. - W_0 : these are gluing cycles: the homology group on the components of $F_i \cap F_j$ $(i \neq j)$. - W_1 : the direct sum of the $H_1(F_i)$. - $W_2 = H_1(F_{qen})$. The subspaces W_0 and W_1 depend on the value c. **Jordan blocks for** n=2. For polynomials in two variables, the size of Jordan blocks for the monodromy h_c is less or equal to 2. Let denote by σ and τ cycles of $H_1(F_{gen})$ such that $h(\sigma) = \sigma$ and $h(\tau) = \sigma + \tau$. The matrix of h_c for the family (σ, τ) is $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. We already know that the cycle σ vanishes. A large cycle is a cycle of $W_2 = H_1(F_{gen})$ that has a non-trivial class in W_2/W_1 . According to [MW] τ is large cycle; moreover large cycles associated to the eigenvalue 1 are the embedding of $H_1(\bar{G}_c)$ in $H_1(F_{gen})$. So large cycles are not vanishing cycles. The number of classes of large cycles in W_2/W_1 is rk $H_1(\bar{G}_c)$, this is also the number of Jordan 2-blocks for the eigenvalue 1. Vanishing cycles. We are now able to describe vanishing cycles. For all the spaces W_{-1} , W_0/W_{-1} , W_1/W_0 and W_2/W_1 the cycles associated to eigenvalues different from 1 are vanishing cycles. **Proposition 9.** Vanishing cycles for the eigenvalue 1 are dispatch as follows: - for W_{-1} : $r(F_c) 1$ cycles, - for W_0 : rk $H_1(\bar{G}_c)$ other cycles, - W_1 , W_2 : no other cycle. Proof. We have already remark that large cycles associated to $\begin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix}$ are not vanishing cycles, so vanishing cycles in W_2 are in W_1 . Moreover there is $\operatorname{rk} H_1(\bar{G}_c)$ Jordan 2-blocks for the eigenvalue 1 that provide $\operatorname{rk} H_1(\bar{G}_c)$ vanishing cycles (like σ) in W_0 . The other vanishing cycles for the eigenvalue 1 are invariant cycles by h_c , in other words they belong to $K_1(c)$. We have $W_1 \cap K_1(c) = W_0 \cap K_1(c)$ because invariant cycles for W_1 that are not in W_0 correspond to the genus of the smooth part F_c° of F_c (this is due to the equality $\operatorname{Ker}(h_c - \operatorname{id}) = \ell_c(H_1(F_c^{\circ}))$). As they already appear in F_c , theses cycles are not vanishing cycles for the value c. Finally, if we have two distinct cycles σ and σ' in $W_0 \cap K_1(c)$, with the same class in W_0/W_{-1} , then $\sigma' = \sigma + \pi$, $\pi \in W_{-1}$; this implies that $\pi = \sigma' - \sigma$ is a vanishing cycle of $K_1(c)$. We can choose the $r(F_c) - 1$ remaining cycles of $K_1(c)$ in W_{-1} . ## References - [ACD] E. ARTAL-BARTOLO, P. CASSOU-NOGUÈS and A. DIMCA, Sur la topologie des polynômes complexes, Singularities (Oberwolfach, 1996), *Progr. Math.*, 162, Birkhäuser, Basel, 317-343, 1998. - [DN] A. DIMCA and A. NÉMETHI, On the monodromy of complex polynomials, Duke Math. J., 108, 199-209, 2001. - [LW] Lê D.T. and C. Weber, A geometrical approach to the Jacobian conjecture for n=2, Kodai Math. J., 17, 374-381, 1994. - [MW] F. MICHEL and C. Weber, On the monodromies of a polynomial map from \mathbb{C}^2 to \mathbb{C} , to appear in *Topology*. - [NN] W. NEUMANN and P. NORBURY, Unfolding polynomial maps at infinity, *Math. Ann.*, 318, 149-180, 2000. #### Arnaud Bodin Centre de Recerca Matemàtica, Apartat 50, 08193 Bellatera, Spain abodin@crm.es