
JUMP OF MILNOR NUMBERS

ARNAUD BODIN

Abstract. In this note we study a problem of A’Campo about the
minimal non-zero difference between the Milnor numbers of a germ of
plane curve and one of its deformation.

1. Problem of the jump (A’Campo)

Let f0 : (Cn, 0) −→ (C, 0) be an analytic germ of isolated singularity. A
deformation of f0 is a family (fs)s∈[0,1] of germs of isolated singularities such
that the coefficients are analytic functions of s ∈ [0, 1].

The jump of the family (fs) is

µ(f0)− µ(fs), 0 < s � 1,

where µ is the Milnor number at the origin. This number is well-defined
because µ(f0)− µ(fs) is independent of s if s is sufficiently small, moreover
by the upper semi-continuity of µ this number is a non-negative integer.

The most famous result about the Milnor number and the topology of the
family is Lê-Ramanujam’s theorem [6]:

Theorem 1. If n 6= 3 and if µ(f0) = µ(fs) for all s ∈ [0, 1] then the
topological types of f−1

0 (0) and f−1
s (0) are equal.

In other words, if the jump of the family (fs) is 0 then f−1
0 (0) and f−1

s (0)
have the same topological type for sufficiently small s. Another motivation is
that the jump of a family is crucial in the theory of singularities of polynomial
maps at infinity.

The jump λ(f0) of f0 is the minimum of the non-zero jumps of the (fs) over
all deformations of f0. The problem, asked by N. A’Campo, is to compute
λ(f0). We will only deal with plane curve singularities, that is to say n = 2.

As a corollary of our study we prove the following:

Theorem 2. If f0 is an irreducible germ of plane curve and is Newton non-
degenerate then

λ(f0) = 1.

A closely related question of V. Arnold [1] formulated with our definitions
is to find all singularities with λ(f0) = 1. S. Gusein-Zade [4] proved that
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there exist singularities with λ(f0) > 1 and as a corollary of a studied of the
behaviour of the Milnor number in a deformation of a desingularization he
proved Theorem 2 for all irreducible plane curves.

This note is organized as follows, in paragraphs 2 to 5 we define and
calculate a weak form of the jump : the non-degenerate jump. In paragraph
6 we prove Theorem 2 and in paragraph 7 we give estimations when the germ
is not irreducible. Finally in paragraph 8 we state some conjectures for the
jump of xp − yq, p, q ∈ N and end by questions.

Acknowledgments : I am grateful to Norbert A’Campo for discussions.

2. Kušnirenko’s formula

We firstly recall some definitions (see [5]). Let f(x, y) =
∑

(i,j)∈N2 ai,jx
iyj

be an analytic germ of plane curve. Let supp(f) = {(i, j) ∈ N2 | ai,j 6= 0}
and Γ+(f) be the convex closure of

⋃
(i,j)((i, j)+R2

+) where (i, j) ∈ supp(f)\
{(0, 0)}. The Newton polygon Γ(f) is the union of the compact faces (called
the slopes) of Γ+(f). We often identify a pair (i, j) ∈ N2 with the monomial
xiyj . Let f be convenient if Γ(f) intersects both x-axis and y-axis.

For a face γ of Γ(f), let fγ =
∑

(i,j)∈γ ai,jx
iyj . Then f is (Newton) non-

degenerate if for all faces γ of Γ(f) the system
∂fγ

∂x
(x, y) = 0 ;

∂fγ

∂y
(x, y) = 0

has no solution in C∗ × C∗.
For a Newton polygon Γ(f), let S be the area bounded by the polygon

and a (resp. b) the length of the intersection of Γ(f) with the axes x-axis
(resp. y-axis). We set

ν(f) = 2S − a− b + 1.

For a convenient germ f the local Milnor number verifies [5] :

Theorem 3.
• µ(f) > ν(f),
• if f is non-degenerate then µ(f) = ν(f).

3. Non-degenerate jump for curve singularities

We will consider a weaker problem: Let f0 be a plane curve singularity and
we suppose that (fs) is a non-degenerate deformation that is to say for all
s ∈]0, 1], fs is Newton non-degenerate. The non-degenerate jump λ′(f0) of f0

is the minimum of the non-zero jumps over all non-degenerate deformations
of f0. The new problem is to compute λ′(f0), in this note we explain how to
compute it.

Obviously we have λ(f0) 6 λ′(f0) but this inequality can be strict. For
example let f0(x, y) = x4 − y4, then λ′(f0) = 3 which is obtained for the
family f ′s(x, y) = x4 − y4 + sx3. But λ(f0) 6 2, by the degenerate family
fs(x, y) = x4 − (y2 + sx)2 of jump 2.
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4. Computation of the non-degenerate jump

For a convenient f0 there exists a finite set M of monomials xpyq lying
between the axes (in a large sense) and the Newton polygon Γ(f0) (in a strict
sense).

Lemma 4. If f0 is non-degenerate and convenient then

λ′(f0) = min
xpyq∈M

(
µ(f0)− µ(f0 + sxpyq)

)
,

for a sufficiently small s 6= 0 (the minimum is over the non-zero values).

Proof. The proof is purely combinatoric and is inspired from [2]. For any
polygon T of N×N, we define as for ν a number τ(T ) = 2S− a− b. Then τ
is additive : let T1, T2 be polygons whose vertices are in N×N, and such that
T1 ∩ T2 has null area then τ(T1 ∪ T2) = τ(T1) + τ(T2). By this additivity we
can argue on triangles only. Moreover for a polygon T that do not contain
(0, 0) we have τ(T ) > 0.

Now the jump for a non-degenerate family (fs) corresponds to τ(T ) where
T is the polygon “between” Γ(f0) and Γ(fs) (0 < s � 1). Minimizing this
jump is equivalent to minimizing τ(T ). It is obtained for a polygon T for
which all vertices except one are in Γ(f0) and the last vertex is in Γ(fs).
Then it is sufficient to add only one monomial corresponding to the latter
vertex to obtain the required deformation. �

With this method we do not compute µ(f0), nor µ(f0+sxpyq) but directly
the difference.

For a degenerate function f we denote by f̃ a non-degenerate function
such that f and f̃ have the same Newton polygon: Γ(f0) = Γ(f̃0). The
non-degenerate jump for a degenerate function f0 can be computed with the
easy next lemma:

Lemma 5. Let f0 be degenerate.
• λ′(f0) = µ(f0)− µ(f̃0) if µ(f0)− µ(f̃0) > 0,
• else λ′(f0) = λ′(f̃0).

5. An example

For a given polynomial f0 it is very fast to see who will be the good
candidates xpyq and hence to find λ′(f0) after a very few calculus: we use
that µ(f0)− µ(f0 + sxpyq) = τ(T ) where T is the zone between the Newton
polygon of f0 and the one of f0 + sxpyq.

For example let f0(x, y) = x4 − y3. We draw its Newton polygon (see
Figure 1). We easily see that the monomials xpyq that are candidates to
minimize τ for the zone between the Newton polygons are x3 (that will give
a zone with τ(T ) = 2) and xy2 that will give a zone with τ(T ) = 1. In that
case the deformation will be fs(x, y) = x4 − y3 + sxy2 and the jump of f0 is
1.
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Figure 1. Example f0(x, y) = x4 − y3

6. Irreducible case

In some cases we are able to give a formula for the computation of the
jump. For example if f0(x, y) = xp − yq, with gcd(p, q) = d then by Bézout
theorem there exists a pair (a, b) such that xayb is in M and such that the
area T corresponding to the deformation fs(x, y) = xp − yq + sxayb is equal
to d/2.

As an application we prove Theorem 2 cited in the introduction.

Theorem 6. If f is irreducible and non-degenerate then λ(f) = λ′(f) = 1.

Proof. We recall some facts from the book of Brieskorn-Knörrer [3, p.477].
For a germ of curve f , the number of slopes of a Newton polygon Γ(f) is
lower or equal to the number r of irreducible components.

Moreover let R be the number of lattice points that belongs to Γ(f) minus
1. Then if f is non-degenerate we have R = r. The non-degenerate condition
is not explicit in [3] but it is stated with an equivalent condition (a face is
non-degenerate if and only if the corresponding polynomial gi of [3, p.478]
has only simple roots).

Then for an irreducible singular germ f , Γ(f) has only one slope and f
is convenient; moreover if f is non-degenerate then the extremities of Γ(f),
say xp and yq, verify gcd(p, q) = 1. The non-degenerate jump of f is the
same as for f0 = xp − yq and is equal to 1 by Bézout theorem. Then
λ′(f) = λ′(f0) = 1, as 0 < λ(f) 6 λ′(f) = 1 it implies λ(f) = 1. �

7. Non irreducible case

More generally if f is convenient, non-degenerate, with one slope, let xp,
yq be the extremities of the Newton polygon of f . Then f has the same non-
degenerate jump as f0 = xp−yq, we suppose p > q and we set d = gcd(p, q).
The formula for λ′(f0) is given by:

(1) If 1 6 d < q 6 p then λ′(f0) = d which is reached by a family
fs(x, y) = xp − yq + sxayb, a, b given by Bézout theorem.

(2) If gcd(p, q) = q, i.e. d = q then λ′(f0) = q − 1 which is reached with
fs(x, y) = xp − yq + sxp−1.
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We will give in paragraph 8 a conjectural value for λ(xp − yq).
If there are several slopes with f convenient and non-degenerate then we

can estimate λ′(f). Let f =
∏k

i=1 fi be the decomposition of f according
to the slopes of Γ(f) (notice that fi is not necessarily irreducible). If fi is
a smooth germ then we set (by convention) λ′(fi) = 1. In fact fi is smooth
if and only if the corresponding slope Γi with extremities Ai, Bi verifies
|xBi − xAi | = 1 or |yBi − yAi | = 1. Then the following can be proved:

Lemma 7. Let f be a convenient non-degenerate germ with several slopes,
let f =

∏k
i=1 fi be the decomposition according to the slopes.

(1) If all the fi are smooth then λ′(f) = 1.
(2) If none of the fi is smooth then

min
i=1..k

λ′(fi) 6 λ′(f) 6 max
i=1..k

λ′(fi).

(3) In the other cases we have

min
i=1..k

λ′(fi) 6 λ′(f) 6 max
i=1..k

λ′(fi) + 1.

We give some examples:
(1) The family fs(x, y) = (x + y4)(x + y2)(x2 + y) + sy4 is of non-

degenerate jump 1.
(2) The family fs(x, y) = (x8− y6)(x3− y2)+ sxy7 gives λ′(f0) = 2 with

λ′(x8 − y6) = 2 and λ′(x3 − y2) = 1.
(3) The family fs(x, y) = (x8 − y6)(x3 − y2)(x4 − y4) + sx5y7 verifies

λ′(f0) = 2 while λ′(x8−y6) = 2 and λ′(x3−y2) = 1 and λ′(x4−y4) =
3.

(4) The family fs(x, y) = (x+y3)(x4+y4)(x2+y)+sy5 verifies λ′(f0) = 4
with the smooth germs x + y3, x2 + y and λ′(x4 + y4) = 3.

8. Conjectures for the jump

We give a conjectural value for λ(f0) in the case that f0 = xp − yq with
p > q.

(1) If gcd(p, q) = 1 then λ(f0) = λ′(f0) = 1.
(2) If p = q and q is prime then λ′(f0) = q−1, with the family fs(x, y) =

xq +yq +sxq−1. And we conjecture that λ(f0) = q−2 with the family
fs(x, y) = xq + yq + s(x + y)q−1.

(3) If p = kq (k > 1) and q is prime, then λ′(f0) = q−1, with the family
fs(x, y) = xp + yq + sxp−1. It is conjectured that λ(f0) = λ′(f0).

(4) If q is not prime and p = kq, k ∈ N∗ then let q = ab with a > 2 the
smallest prime divisor of q. Then λ′(f0) = q − 1 = ab − 1 for the
family fs(x, y) = xp−yq+sxp−1. It is conjectured that λ(f0) = ab−b,
which jump is reached for the family fs(x, y) = xp − (ya + sxka−1)b.

(5) If gcd(p, q) = d with 1 < d < q 6 p then λ′(f0) = d. And it is
conjectured that λ(f0) = d too.
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We make a remark for point (4), let g0(x, y) = xp/b−yq/b = xka−ya. Then
g0 verifies the hypotheses of point (3) where we have conjectured λ(f0) =
a − 1 for the deformation gs(x, y) = xka − ya − sxka−1. Then we calculate
gs(x, y)b = (xka−ya−sxka−1)b which is of course not a reduced polynomial.
We develop and we have an approximation of gs(x, y)b if we set fs(x, y) =
xkab − (ya + sxka−1)b = xp − (ya + sxka−1)b with a jump equal to ab− b.

Apart from the conjectures above we ask some questions. Even if it seems
hard to give a formula for the jump, maybe the following is easier:

Question 1. Find an algorithm that computes λ.

Finally the problem of the jump can be seen as a weak form of the problem
of adjacency. For example the list of possible Milnor numbers arising from
deformations of f0(x, y) = x4 − y4 is (9, 7, 6, 5, 4, 3, 2, 1, 0). Then the gap
between the first term 9 = µ(f0) and the second term is the jump λ(f0) = 2.
Then the following question is a generalization of the problem of the jump.

Question 2. Give the list of all possible Milnor numbers arising from defor-
mations of a germ.
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