
POLYNOMIAL EQUATIONS MODULO PRIME NUMBERS

ARNAUD BODIN, PIERRE DÈBES, AND SALAH NAJIB

Abstract. We consider polynomial equations, or systems of polynomial equations, with
integer coe�cients, modulo prime numbers p. We o�er an elementary approach based
on a counting method. The outcome is a weak form of the Lang-Weil lower bound for
the number of solutions modulo p, only di�ering from Lang-Weil by an asymptotic pε

multiplicative factor. Our second contribution is a reduction lemma to the case of a single
equation which we use to extend our results to systems of equations. We show further
how to use this reduction to prove the full Lang-Weil estimate for varieties, assuming it
for hypersurfaces, in a version using a variant of the classical degree in the error term.

1. Introduction and main results

Let F (x1, . . . , xr) be a nonconstant polynomial in one or several variables and with integer

coe�cients. For which prime numbers p the equation:

F (x1, . . . , xr) = 0 mod p

has integer solutions? and for such primes p, what is the size of the set of solutions? These

are the questions that we consider, for such an equation, and more generally for a system of

several such polynomial equations. In geometric terms, the problem is to count the number

of rational points over �nite �elds Fp on the zero set Z(F mod p), or, for a system, on the

zero set of an ideal generated by several polynomials, regarded modulo p. A classical and

deep achievement in this perspective is the

Lang-Weil estimate [10]. Given nonnegative integers d, r, h, there is a positive constant

A(r, h) such that for every �nite �eld Fq of cardinality q = pβ with p prime and β ⩾ 1,

and every prime ideal I ⊂ Fq[x1, . . . , xr] such that the a�ne variety V = Z(I) ⊂ Ar is

geometrically irreducible1, of dimension dim(V ) = d and of degree deg(V ) = h, we have:

(1) | card(V (Fq))− qd| ⩽ (h− 1)(h− 2) qd−
1
2 +A(r, h) qd−1.

Here dim(V ) is the dimension of V and deg(V ) is its degree, i.e. the number of inter-

section points of V with dim(V ) hyperplanes in general position. For a single equation

F (x1, . . . , xr) = 0, i.e. when V is a hypersurface, dim(V ) = r − 1 and deg(V ) = deg(F ).

We o�er two main contributions to this topic with some applications.

Assume F ∈ Z[x1, . . . , xr] is nonconstant (but not necessarily irreducible). For every prime

number p, denote by cp(F ) the number of points ω ∈ Fr
p such that (F mod p)(ω) = 0 mod p.

We will use the following bounds for cp(F ) as landmarks.
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An upper bound is easily provided by the Zippel-Schwartz lemma, which is a several

variable generalization of the fact that over a �eld, a one variable nonzero polynomial has

no more roots than its degree; see Section 2.1 for a reminder.

Zippel-Schwartz upper bound. For all primes p we have cp(F ) ⩽ deg(F ) pr−1.

This upper bound will be su�cient for our purposes. For other variants, we refer to [8]

and [14].

Finding a lower bound is a deeper issue. Recall that it is not even clear a priori that

cp(F ) ̸= 0 for in�nitely many p � this is a theorem of Schur [12] � and that it may well

happen that cp(F ) = 0 for in�nitely many p 2: take F = x2y2 + 1. As detailed in Section

2.5, the Lang-Weil estimate (as stated above) leads to the following:

Lang-Weil lower bound. Assume F ∈ Z[x1, . . . , xr] is nonconstant. For every ε > 0,

there exist in�nitely many primes p such that

cp(F ) ⩾ (1− ε) pr−1.

A �rst contribution of this paper is an elementary approach to the lower bound issue, which

leads to the following weak but still meaningful form of the Lang-Weil lower bound, in the

arbitrary dimension context. We start below with the case of hypersurfaces before giving

the result in the general case of systems (Corollary 1.4).

Denote the set of prime numbers by P.

Theorem 1.1. Assume F ∈ Z[x1, . . . , xr] is nonconstant. Then the series
∑

p∈P
cp(F )
pr is

divergent. Consequently, for every ε > 0, we have:

cp(F ) ⩾ pr−1−ε.

for in�nitely many p ∈ P.

From the Zippel-Schwartz upper bound, the series
∑

p∈P cp(F )/p
r+ε is convergent (for every

ε > 0). Thus r is the largest exponent for which the series
∑

p∈P cp(F )/p
r is divergent.

Our approach to Theorem 1.1 rests on combinatoric and analytic considerations going

back to a method of Ekedahl [5] and Poonen [11] (already used in [1]), and on the Zippel-

Schwartz lemma. Though weaker than the Lang-Weil lower bound, the more elementarily

obtained Theorem 1.1 gives the right order of magnitude pr−1 for cp(F ), up to a multi-

plicative factor p−ε, for in�nitely many p ∈ P.

Remark 1.2. There is an abundant literature on the 1-dimensional case of the Lang-Weil

estimate, which include re�ned bounds, elementary approaches, notably by Stepanov-

Schmidt-Bombieri, Voloch, Heath-Brown, Corvaja-Zannier. We refer to the general texts

[16, Chapter 6] and [15] for more on this topic and more references. Our bounds are valid

in higher dimension but do not compete with these results in the curve case.

A second contribution of this paper is a reduction lemma to a single equation for a system of

several polynomial equations, i.e. in geometric terms, from the case of a general a�ne vari-

ety to that of a hypersurface. The notation cp(I) used below for an ideal I ⊂ Z[x1, . . . , xr]
generalizes cp(F ): for every p ∈ P, cp(I) is the number of points ω ∈ Fr

p such that

(P mod p)(ω) = 0 mod p for every P ∈ I; that is: cp(I) = card(Z(I mod p)(Fp))
3.

2but only in the case that F is reducible in Q[x1, . . . , xr], as pointed out in Remark 2.5.
3that is: the cardinality of the set of Fp-rational points on the Zariski-closed subset Z(I mod p) ⊂ Ar

Fp .
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Lemma 1.3. Let I ⊂ Z[x1, . . . , xr] be a prime ideal such that I ∩ Z = {0}. Set V =

Z(I) ⊂ Ar and d = dim(V ). Then there is an irreducible polynomial F ∈ Z[T1, . . . , Td, Y ]

and a constant B depending on I such that, for all primes p, we have:

|cp(I)− cp(F )| ⩽ B pd−1.

The classical approach to Lang-Weil goes by induction, on the dimension of V , using Chow

varieties [10]. With Lemma 1.3 we can work instead with the number of de�ning equations

of V , reducing to the case it is one, i.e. V is an hypersurface H : F (t, y) = 0 ⊂ Ad+1. Other

approaches proceed as we do and construct hypersurfaces H ⊂ Ad+1 from general a�ne

varieties V ⊂ Ar. But while these use generic linear projections Ar → Ad+1 and try to

optimize them to birationally map V to a good hypersurfaceH, we directly construct a spe-

ci�c hypersurface H that locally represents V , in the sense of De�nition 3.1. Furthermore,

our construction is performed over rings. See Lemmas 3.3�3.4, which rest on the Noether

normalization lemma and the primitive element theorem and do not use Chow varieties.

We give two applications. The �rst one extends Theorem 1.1 to systems of equations.

Corollary 1.4. Let I ⊂ Z[x1, . . . , xr] be an ideal such that I ∩ Z = {0} (not necessarily

prime). Then the series
∑

p∈P
cp(I)
pd+1 is divergent.

That is: Theorem 1.1 holds with cp(I) and d+1 replacing cp(F ) and r. This �rst application

includes further a generalization of the Zippel-Schwartz upper bound for cp(I) with deg(F )

replaced by some constant M depending on I (Lemma 3.9(a)).

The second application is a proof, assuming the case of hypersurfaces, of the Lang-Weil

estimate itself, with the following di�erence concerning the error term. Instead of the

degree deg(V ), we introduce the hypersurface degree hdeg(V ) of a d-dimensional variety

V as the smallest degree of some polynomial F ∈ Q[T1, . . . , Td, Y ] locally representing V

as a hypersurface over Z[c−1] for some nonzero c ∈ Z (De�nition 3.6).

Using a more general form of Lemma 1.3 (namely Lemma 3.4), we prove the following

statement, assuming the case of hypersurfaces (which is well-known; see e.g. [2]).

Corollary 1.5. The Lang-Weil estimate holds with the condition deg(V ) = h replaced by

the condition hdeg(V ) = h. 4

If V is a hypersurface, then it follows from the de�nitions that hdeg(V ) ⩽ deg(V ), but it is

not clear to us how degree and hypersurface degree compare in general. The hypersurface

degree seems however a more intrinsic notion than the usual degree (Remark 3.7).

Structure of the paper. Section 2 is devoted to the case of one polynomial equation.

Theorem 1.1 is proved. Section 3 is concerned with the case of systems of polynomial

equations: Lemma 3.4, which generalizes Lemma 1.3, is proved; then we deduce Corollary

1.4 and Corollary 1.5; a �nal illustration is given in Section 3.5.

2. One polynomial equation

This section is aimed at proving Theorem 1.1. The proof is divided into three stages which

correspond to Sections �2.2�2.4. The preliminary Section 2.1 is a reminder on the Zippel-

Schwartz lemma. Our proposed approach is elementary. As a comparison, we explain in

the �nal Section 2.5 how to use the Lang-Weil estimate, �rst to obtain the Lang-Weil lower

bound, and then in Remark 2.4, how to re-obtain Theorem 1.1.

4Corollary 1.5 is explicitly restated in Section 3, when it is proved.
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2.1. Zippel-Schwartz lemma. This lemma is usually stated as a probability result; here

we give a more arithmetic version of the statement and of the proof.

Theorem 2.1 (Zippel-Schwartz lemma). Let F (x1, . . . , xr) be a nonzero polynomial of

degree d over a �eld K. Let S be a non-empty �nite set of K. Then

card {(a1, . . . , ar) ∈ Sr | F (a1, . . . , ar) = 0} ⩽ d card(S)r−1.

Applying this lemma withK = Q and S = J0, p−1K immediately yields the Zippel-Schwartz

upper bound from Section 1.

Proof of Zippel-Schwartz lemma. The proof is by induction on the number r of variables.

For r = 1, the result is clear: a nonzero polynomial F (x1) of degree d has at most d roots

in K. Suppose that the Zippel-Schwartz lemma is true for polynomials in r − 1 variables.

Let F (x1, . . . , xr) be a nonzero polynomial of degree d. One may assume that the variable

xr actually appears in F and write F as a polynomial of degree δ ⩾ 1 in this variable:

F (x1, . . . , xr) = fδ(x1, . . . , xr−1)x
δ
r + · · ·+ f0(x1, . . . , xr−1).

Below we count the r-tuples (a1, . . . , ar) ∈ Sr such that F (a1, . . . , ar) = 0. Set s = card(S).

� If fδ(a1, . . . , ar−1) ̸= 0, then F (a1, . . . , ar−1, xr) ∈ K[xr] is a nonzero one variable

polynomial of degree δ. There are at most sr−1 choices for (a1, . . . , ar−1) ∈ Sr−1

and δ choices for ar. Whence a subtotal of δsr−1 possibilities.

� If fδ(a1, . . . , ar−1) = 0, apply the induction hypothesis to the r − 1-variable poly-

nomial fδ(x1, . . . , xr−1), which is of degree ⩽ d− δ. This yields at most (d− δ)sr−2

choices for (a1, . . . , ar−1) and s for ar. Whence a subtotal of (d−δ)sr−1 possibilities.

� The sum of these two subtotals is the Zippel-Schwartz bound dsr−1.

□

2.2. A set of density 0. The �rst stage of the proof of Theorem 1.1 is Lemma 2.2 below.

Fix a nonconstant polynomial F ∈ Z[x]. For p ∈ P, consider the sets:

Qp =
{
x ∈ Zr | F (x) = 0 mod p

}
,

Rp = Zr \ Qp =
{
x ∈ Zr | F (x) ̸= 0 mod p

}
‘

We have:

cp(F ) = card(Qp ∩ J0, p− 1Kr).
Let R be the set of all x ∈ Zr such that no prime divides F (x), that is:

R =
⋂
p∈P

Rp = {x ∈ Zr | F (x) = ±1} .

Recall that a �xed prime divisor of a polynomial F (x) is a prime number q that divides

F (x) for all x ∈ Zr. A nonzero polynomial has only �nitely many �xed prime divisors

(since they should all divide any nonzero value) and may have none.

Denote by F = {q1, . . . , qm} the set of �xed prime divisors of F . Let R̃ be the the set of

all x ∈ Zr such that q1, . . . , qm are the only possible prime divisors of F (x), that is:

R̃ =
⋂

p∈P\F

Rp

The density µ(S) of a subset S ⊂ Zr is de�ned as following limit, if it exists:

µ(S) = lim
B→+∞

card(S ∩ J0, B − 1Kr)
Br

.
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Lemma 2.2. We have µ(R) = 0 and µ(R̃) = 0.

Proof. Density of R. Denote by d the degree of F (x). By the Zippel-Schwartz lemma

applied to (F (x) = 1), we have:

card(F (x) = 1) ∩ J0, B − 1Kr

Br
⩽

d

B
−−−−−→
B→+∞

0.

The same is true for (F (x) = −1). Hence µ(R) = 0.

Density of R̃. We show below that the intersection of R̃ with J0, B − 1Kr is contained in

the union of a relatively small number of sets (F (x) = qα1
1 · · · qαm

m ).

� Upper bound of |F (x)| on J0, B − 1Kr. Let F (x) =
∑

i aix
i. Let H = max |ai| and

d = deg(F ). Then

|F (x)| ⩽
∑
i

|ai|
∣∣xi∣∣ ⩽∑

i

HBd ⩽ (d+ 1)rHBd.

� Upper bound for the exponents αi. Let x ∈ R̃∩J0, B−1Kr and F (x) = qα1
1 · · · qαm

m .

As qi ⩾ 2 and F (x) ⩽ (d + 1)rHBd then 2αi ⩽ (d + 1)rHBd, whence, for each

i = 1, . . . ,m:

αi ⩽ ln2
(
(d+ 1)rHBd

)
and so

αi ⩽ d ln2(B) + c

where c is a constant depending only on r, d and H.

� Upper bound for card(R̃∩J0, B−1Kr). An element x in R̃∩J0, B−1Kr is a solution
of an equation (F (x) = qα1

1 · · · qαm
m ). Each set has at most dBr−1 elements by the

Zippel-Schwartz lemma, and there are at most (d ln2(B) + c)m such equations.

Thus we have:

card(R̃ ∩ J0, B − 1Kr)
Br

⩽
(d ln2(B) + c)md

B
−−−−−→
B→+∞

0.

Hence µ(R̃) = 0.

□

2.3. Second stage of the proof of Theorem 1.1. We prove the density formula from

Lemma 2.3 below, by adjusting a method going back to Ekedahl and Poonen [11], [5].

For M ⩾ 0, let R̃⩽M be the set of all x ∈ Zr such that the only prime divisors of F (x) are

> M or are in the set F of �xed prime divisors, that is:

R̃⩽M =
⋂

p∈P\F
p⩽M

Rp.

We simply denote cp(F ) by cp.

Lemma 2.3. We have:

µ(R̃⩽M ) =
∏

p∈P\F
p⩽M

(
1− cp

pr

)
.
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Proof. First we compute the density of Qp and Rp for any �xed prime p ∈ P. Note that p
divides F (x1, . . . , xr) with (x1, . . . , xr) ∈ Zr if and only if p divides F (x1+k1p, . . . , xr+krp)

for any (k1, . . . , kr) ∈ Zr. Hence Qp is invariant by any translation of vector in (pZ)r.
Hence, as a function of B, the cardinality card(Qp∩ J0, B−1Kr) is asymptotic to cp ·

(
B
p

)r
as B → ∞. Thus we obtain:

(2) µ(Qp) = lim
B→+∞

card(Qp ∩ J0, B − 1Kr)
Br

=
cp
pr

and µ(Rp) = 1− cp
pr
.

Note further that if p is a �xed prime divisor then µ(Qp) = 1 and µ(Rp) = 0.

Next �x M ⩾ 0 and let {p1, . . . , pℓ} = (P \F)∩ J0,MK be the set of primes ⩽M that are

not �xed prime divisors, and let N be the product of these primes. The Chinese Remainder

Theorem gives an isomorphism from Z/NZ to Z/p1Z × · · · × Z/pℓZ, which we extend to

the dimension r by:

x ∈ (Z/NZ)r 7−→ (x1, . . . , xℓ) ∈ (Z/p1Z)r × · · · × (Z/pℓZ)r,

where xj is x modulo pj . We have the following equivalences:

x ∈ R̃⩽M ∩ J0, N − 1Kr

⇐⇒ ∀j ∈ {1, . . . , ℓ} F (x) ̸= 0 mod pj

⇐⇒ ∀j ∈ {1, . . . , ℓ} F (xj) ̸= 0 mod pj

⇐⇒ ∀j ∈ {1, . . . , ℓ} xj ∈ Rpj ∩ J0, pj − 1Kr.

Recall that Rp = Zr \ Qp so that card(Rp ∩ J0, p− 1Kr) = pr − cp. Whence:

card(R̃⩽M ∩ J0, N − 1Kr) =
ℓ∏

j=1

(prj − cpj ).

This provides the announced density of R̃⩽M :

µ(R̃⩽M ) = lim
B→+∞

card(R̃⩽M ∩ J0, B − 1Kr)
Br

= lim
B→+∞

(
B
N

)r∏ℓ
j=1(p

r
j − cpj )

Br
=

ℓ∏
j=1

(
1−

cpj
prj

)
.

□

2.4. End of proof of Theorem 1.1. Setting Q>M =
⋃

p>M Qp and using (2), we obtain:

µ(Q>M ) = µ

 ⋃
p>M

Qp

 ⩽
∑
p>M

µ (Qp) ⩽
∑
p>M

cp
pr
.

By contradiction, assume that the series
∑

p∈P
cp
pr converges. Then we deduce from the

previous inequalities:

(3) µ(Q>M ) −−−−−→
M→+∞

0

On the one hand R̃ ⊂ R̃⩽M . On the other hand R̃⩽M \ R̃ ⊂ Q>M : indeed if x ∈ R̃⩽M \ R̃
then F (x) has only prime divisors > M , so that x ∈ Qp for some p > M .

Consider the decomposition:

R̃⩽M = R̃ ∪ (R̃⩽M \ R̃) ⊂ R̃ ∪ Q>M .
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It yields the inequalities:

µ(R̃) ⩽ µ(R̃⩽M ) ⩽ µ(R̃) + µ(Q>M ).

As, by (3), µ(Q>M ) −−−−−→
M→+∞

0, we obtain

(4) µ(R̃⩽M ) −−−−−→
M→+∞

µ(R̃).

As µ(R̃⩽M ) =
∏

p⩽M,p∈P\F

(
1− cp

pr

)
by Lemma 2.3, then

µ(R̃) =
∏

p∈P\F

(
1− cp

pr

)
> 0.

The density is indeed positive: the series
∑

p∈P
cp
pr converges and any factor of this in�nite

product is nonzero because cp = pr if and only if p is a �xed prime divisor (which is ruled

out by p /∈ F). This gives a contradiction with µ(R̃) = 0 (Lemma 2.2).

The second part of Theorem 1.1 is an immediate consequence of the �rst one.

2.5. The Lang-Weil approach. As a comparison with our approach, we explain how

to use the Lang-Weil estimate to deduce the Lang-Weil lower bound (both as stated in

Section 1). The argument, in addition to the Lang-Weil estimate, uses the Chebotarev

density theorem and the Ostrowski theorem; recall however that the resulting bound is

better than that of Theorem 1.1. Remark 2.4 completes the argument to obtain the full

Theorem 1.1, i.e. the divergence of the series
∑

p∈P cp(F )/p
r, but at the cost of using the

Lagarias-Odlyzko e�ective form of the Chebotarev theorem.

Alternate proof of the Lang-Weil lower bound. Let F ∈ Z[x] be a nonconstant polynomial

in r ⩾ 1 variables. Let P ∈ Q[x] be an irreducible factor of F in the UFD Q[x]. Let

K be a number �eld containing all coe�cients of P , and β ∈ OK , β ̸= 0, such that

P̃ = βP ∈ OK [x] (with OK the ring of integers of K). It follows from the Chebotarev

density theorem that the set SK of primes p that are totally split in K is of density

γ ⩾ 1/nK !, where nK = [K : Q]. In particular, SK is in�nite. Remove from SK the �nite

set of primes p for which β is in a prime ideal p of K above p. Denote the resulting set

by S′
K . For every prime p ∈ S′

K , select a prime p of K above p. By de�nition of SK ,

we have OK/p ≃ Fp. By the Ostrowski theorem, for all but �nitely many p ∈ S′
K , the

reduced polynomial (P̃ mod p) ∈ Fp[x] is irreducible in Fp[x]. Denote the set of those p by

S′′
K . For p ∈ S′′

K , denote the number of r-tuples ω ∈ Fr
p such that (P̃ mod p)(ω) = 0 by

np(P̃ ). By the Lang-Weil estimate, we have np(P̃ ) = pr−1+O(pr−3/2), and clearly we have

cp(F ) ⩾ np(P̃ ). The Lang-Weil lower bound from Section 1 follows (for every p ∈ S′′
K). □

Remark 2.4 (Alternate proof of Theorem 1.1). Being more precise on the Chebotarev theo-

rem, the same argument leads to the stronger conclusion of Theorem 1.1 that the series∑
p∈P cp(F )/p

r diverges. Indeed, the smaller series
∑

p∈S′′
K
np(P̃ )/p

r is of the same nature

as
∑

p∈S′′
K
1/p (by the Lang-Weil estimate); and we claim that

(5)
∑

p∈SK , p⩽n

1

p
∼ γ log log(n) when n→ +∞

Proof of the claim. We adjust an argument showing that the sum of inverse of primes ⩽ n

is asymptotic to log log n when n → +∞. For every integer n ⩾ 0, denote by πK(n) the

number of primes p ⩽ n that are in SK . From the Chebotarev theorem, the de�nition of
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the density and the prime number theorem, we have πK(n) ≃ γn/ log n when n → +∞.

From the e�ective form of Chebotarev proved by Lagarias-Odlyzko [9] (and improved in

[13]), we have πK(n) = n
logn

(
γ +O( 1

logn)
)
. Claim (5) is the outcome of these evaluations:

∑
p∈SK , p⩽n

1

p
=

n∑
k=1

πK(k)− πK(k − 1)

k
=

n∑
k=1

πK(k)

k
−

n−1∑
k=0

πK(k)

k + 1

=
πK(n)

n
+

n−1∑
k=1

πK(k)

k(k + 1)
=
πK(n)

n
+

n−1∑
k=1

πK(k)

k2
−

n−1∑
k=1

πK(k)

k2(k + 1)

=
n−1∑
k=3

πK(k)

k2
+O(1) =

n−1∑
k=3

[
γ

k log k
+O

(
1

k(log k)2

)]
+O(1)

= γ log log n+O(1)

where we bound
∑n−1

k=3
1

k log k by
∫ n−1
2

dx
x log x and

∫ n
3

dx
x log x in the last step. □

Remark 2.5. If F ∈ Z[x] is irreducible in Q[x], then the Lang-Weil estimate gives that

cp(F ) > 0 for all but �nitely many p ∈ P. Thus polynomials F ∈ Z[x] like F = x2y2 + 1

for which cp(F ) = 0 for in�nitely many p ∈ P are necessarily reducible in Q[x].

3. Systems of polynomial equations

This section is devoted to systems of polynomial equations. Our reduction to the situation

of one equation is explained in Sections 3.1�3.2. The goal is Lemma 3.4, which generalizes

Lemma 1.3 from Section 1. Its applications, Corollary 1.5 and Corollary 1.4, are then

proved in Section 3.3 and Section 3.4. Section 3.5 is a �nal illustration.

3.1. Representing varieties as hypersurfaces. Fix the following for the whole subsec-

tion and the next one. Let R be an integral domain and let K be its fraction �eld. Let

x = (x1, . . . , xr) be an r-tuple of indeterminates with r ⩾ 1. Let I ⊂ R[x] be a prime ideal

such that I ∩ R = {0}; this condition guarantees that I remains prime and of the same

height if base changed to K. Let A = R[x]/I be the quotient ring and V = Z(I) ⊂ Ar be

the associated a�ne variety. Let L be the fraction �eld of A. Let d = dim(V ) ⩾ 0 be the

dimension of V ; it is also the Krull dimension of A and the transcendence degree of the

extension L/K. Let T1, . . . , Td, Y be d+ 1 new indeterminates and set T = (T1, . . . , Td).

De�nition 3.1. A polynomial F ∈ R[T , Y ], monic and separable in Y , irreducible in

K[T , Y ] and of degree δ = degY (F ) ⩾ 1, is said to locally represent the a�ne variety

V as a hypersurface over R if there exist:

� a d-tuple t = (t1, . . . , td) ∈ Ad and an element α ∈ A such that F (t, α) = 0, and

� a nonzero polynomial ∆ ∈ R[t] satisfying ∆(t) ̸= 0,

such that:

(*) A[∆(t)−1] is a R[t,∆(t)−1, α]-module generated by �nitely many purely inseparable

elements over K(t, α).

Note that L = Frac(A[∆(t)−1]) is a �nite extension of K(t); both �elds have transcendence

degree d, which forces t1, . . . , td to be algebraically independent over K. In particular

∆(t) ̸= 0 follows from ∆ ̸= 0 and we can lighten the notation by writing ∆−1 for ∆(t)−1.
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Remark 3.2 (about the phrase �locally represented by a hypersurface�). Instead of � locally�,

we say �above the Zariski-open subset Ad \Z(∆)� when we want to be more speci�c. Below

we explain the geometric hypersurface representation idea behind De�nition 3.1.

Assume that R is of characteristic 0. So there are no inseparables and (*) rewrites as

(6) A[∆−1] = R[t,∆−1, α] = R[t,∆−1] +R[t,∆−1]α+ · · ·+R[t,∆−1]αδ−1.

It follows next from F being irreducible in K[T , Y ] and monic that F is irreducible in

R[T , Y ] and that R[t,∆−1, α] is isomorphic to the coordinate ring R[T ,∆−1][Y ]/(F ) of the

hypersurface Z(F ) ⊂ Ad+1, above the open subset Ad \Z(∆). De�nition 3.1 geometrically

means that

(**) there is a �nite morphism V → Ad (given by the inclusion R[t] ⊂ A) such that, above

the open subset Ad \ Z(∆), the variety V is isomorphic to the hypersurface Z(F ).

With no assumption on the characteristic ofR, there is a �nite purely inseparable morphism

V →W such that W has property (**).

Lemma 3.3. Assume that R is integrally closed. Then there exists c ∈ R, c ̸= 0, such that

the a�ne variety V ⊂ Ar can be locally represented as a hypersurface over the ring R[c−1].

Lemma 3.3 can be viewed as an improved version, over rings, of the classical fact that

every variety V over a �eld K of characteristic 0 is birational to a hypersurface.

Proof of Lemma 3.3. The R-algebra A being of �nite type, the Noether normalization

lemma (e.g. [4, Cor.13.18]) may be applied to provide:

� an element c ∈ R, c ̸= 0,

� a d-tuple t = (t1, . . . , td) of elements of R[c−1], algebraically independent over K,

� m elements θ1, . . . , θm ∈ A[c−1] (m ⩾ 1),

such that:

(7) A[c−1] = R[c−1][t] θ1 + · · ·+R[c−1][t] θm.

Consider the �eld extension:

L/K(t) = K(t, θ1, . . . , θm)/K(t).

The ring A[c−1] being a R[c−1][t]-module of �nite type, the elements θ1, . . . , θm are integral

over R[c−1][t]; in particular, the extension L/K(t) is �nite.

Let p ⩾ 0 be the characteristic of R. For each i = 1, . . . ,m, let pki be the minimal exponent

such that θ̃i = θp
ki

i is separable over K(t), with the convention that pki = 1 if p = 0. With

Ã = R[t, θ̃1, . . . , θ̃m] and L̃ = K(t, θ̃1, . . . , θ̃m),

(***) the ring A[c−1] is the Ã[c−1]-module generated by θ1, . . . , θm, which are purely insep-

arable over L̃.

The extension L̃/K(t) is separable, hence has a primitive element α which classically can

be taken of the form:

α =

m∑
i=1

αiθ̃i

with α1, . . . , αm ∈ R[t]. Thus α ∈ Ã[c−1] and is integral over the subring R[c−1][t]. Let

� F (t, Y ) be the (monic) irreducible polynomial of α over K(t), and

� ∆(t) be the discriminant of the K(t)-basis of L̃:

1, α, . . . , αδ−1 with δ = [L̃ : K(t)] = degY (F ).
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As R[c−1][t] is integrally closed (as a consequence of R being so), we classically have that

F (t, Y ) ∈ R[c−1][t, Y ], that ∆(t) ∈ R[c−1][t] and is nonzero, and that

(8) ∆(t) θ̃i ∈ R[c−1][t, α] i = 1, . . . ,m.

Conclude that Ã[c−1][∆−1] = R[c−1][t,∆−1, α] and that A[c−1][∆−1] is a R[c−1][t,∆−1, α]-

module generated by m elements, purely inseparable over L̃ = K(t, α). Note �nally that

as t1, . . . , td are algebraically independent over K, the polynomial F (t, Y ) ∈ K[t, Y ] deter-

mines a polynomial F ∈ K[T , Y ] which is irreducible in K[T , Y ], monic, separable and of

degree δ in Y . □

3.2. A key lemma. Retain the notation from Section 3.1. Let F be a �nite �eld. Given

a ring morphism ρ : R → F and a polynomial P with coe�cients in R, denote by P ρ the

polynomial obtained from P by applying the morphism ρ to all coe�cients of P . We use

similar notation for ideals of R[x].

Denote by cρ(I) the number of F-rational points on the Zariski-closed subset Z(Iρ) ⊂ Fr
:

cρ(I) = card
{
ω ∈ Fr | P ρ(ω) = 0 for every P ∈ I

}
.

Suppose given a polynomial F ∈ R[T , Y ] locally representing V as a hypersurface over R.

Retain the notation from De�nition 3.1 regarding t, α and ∆. Since t ∈ Ad, there exist

polynomials φ1, . . . , φd ∈ R[x] such that:

ti = φi mod I = φi(x mod I) i = 1, . . . , d.

Set φ = (φ1, . . . , φd) and consider the polynomial f = ∆(φ) ∈ R[x]. For later use, note

the following, which already shows that f /∈ I:

(9) (f mod I) = f(x mod I) = ∆(φ)(x mod I) = ∆(φ(x mod I)) = ∆(t) ̸= 0.

Lemma 3.4. Assume that V is locally represented by a hypersurface over R and retain

the notation above. Let F be a �nite �eld and ρ : R→ F be a ring morphism. Assume that

both fρ and ∆ρ are nonzero in F[x]. Then we have the following inequality:

(10) −degY (F ) cρ(∆) ⩽ cρ(I)− cρ(F ) ⩽ cρ(⟨I, f⟩).

Remark 3.5 (Special case d = 0). When dim(V ) = d = 0, the extension L/K is algebraic,

there are no transcendentals t1, . . . , td but the result still holds with {t1, . . . , td} replaced

by the empty set. The elements ∆ and f are in R and are nonzero (and so cρ(∆) =

cρ(f) = 0). Under the assumption that fρ and ∆ρ are nonzero in F[x], conclusion (10)

reads: cρ(I) = cρ(F ). It is established below as the special case d = 0 of the proof.

Proof. The proof divides into two parts. We preliminarily explain the strategy, which may

somewhat be hidden by the necessary details leading to the claimed inequalities.

Strategy. The numbers cρ(I), cρ(F ) are the cardinalities of the sets Z(I
ρ)(F), Z(F ρ)(F).

These in turn can be seen as follows. There is on one hand a 1-1 correspondence

Z(Iρ)(F) → Morρ(A,F)
between Z(Iρ)(F) and the set Morρ(A,F) of ring morphisms from A to F extending ρ; and

on the other hand, there is a 1-1 correspondence

Z(F ρ)(F) → Morρ(R[T , Y ]/(F ),F).
We will show that, up to inverting ∆, �rst we have Morρ(A,F) = Morρ(R[t, α],F) (as a
consequence of A being generated as R[t, α]-module by �nitely many inseparables) and,

second, R[t, α] ≃ R[T , Y ]/(F ) (as noticed in Remark 3.2). This indeed yields �cρ(I) =
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cρ(F ) up to some bound � coming from the inversion of ∆ and which the proof below makes

precise.

1st part. We construct a map Ψ : Z(Iρ)(F) → Z(F ρ)(F), show that a certain restriction

of Ψ is injective and deduce the upper bound part of Lemma 3.4.

Suppose given an element ω = (ω1, . . . , ωr) ∈ Z(Iρ)(F). The morphism ρ : R→ F uniquely

extends to a morphism ρ : A → F such that ρ(x mod I) = ω. Consider the (d + 1)-tuple

(ρ(t1), . . . , ρ(td), ρ(α)), which is in Fd+1. This calculation shows that it lies in Z(F ρ):

F ρ(ρ(t1), . . . , ρ(td), ρ(α)) = ρ(F (t1, . . . , td, α)) = ρ(0) = 0.

Denote the tuple (ρ(t1), . . . , ρ(td), ρ(α)) by (τ1, . . . , τd, ξ) = (τ , ξ) and consider the map

Ψ : Z(Iρ)(F) → Z(F ρ)(F)

that sends every r-tuple ω ∈ Z(Iρ)(F) to the (d+ 1)-tuple (τ , ξ) ∈ Z(F ρ)(F).
Using (9), we obtain:

ρ(∆(t)) = ρ(f(x mod I)) = fρ(ρ(x mod I)) = fρ(ω).

Consider the following Zariski-closed subset of Z(Iρ):

Z(⟨Iρ, fρ⟩) = {ω ∈ Z(Iρ) | fρ(ω) = 0}5

and denote its complement in Z(Iρ)(F) by Z(Iρ)(F)fρ ̸=0.

We claim that: the restriction of Ψ to Z(Iρ)(F)fρ ̸=0 is injective.

Namely, let ω, ω′ ∈ Z(Iρ)(F)fρ ̸=0. They determine two morphisms ρ, ρ′ : A → F ex-

tending ρ : R → F and such that ρ(x mod I) = ω and ρ′(x mod I) = ω′. Assume that

Ψ(ω) = Ψ(ω′). This means that (ρ(t1), . . . , ρ(td), ρ(α)) = (ρ′(t1), . . . , ρ
′(td), ρ

′(α)). Since

ρ(∆(t)) = fρ(ω) ̸= 0 and ρ′(∆(t)) = fρ(ω′) ̸= 0, ρ and ρ′ can be extended to and coincide

on R[t,∆−1, α]. In particular, they coincide on A[∆−1] if R is of characteristic 0.

Assume that R is of characteristic p > 0. If θ is one from a �nite list of purely inseparable

elements (over K(t, α)) that generate A[∆−1] as R[t,∆−1, α]-module, we have that θp
k ∈

R[t,∆−1, α] for some integer k ⩾ 0. It follows that ρ(θp
k
) = ρ′(θp

k
) and so that ρ(θ) = ρ′(θ)

(since taking the p-th power is injective on the �nite �eld F). Conclude that ρ and ρ′

coincide on A[∆−1] in the positive characteristic case as well.

In particular, in both cases, ω = ρ(x mod I) = ρ′(x mod I) = ω′, thus proving the claim.

We have cρ(I) = card(Z(Iρ)(F)) and, by de�nition,

(11) Z(Iρ)(F) = Z(Iρ)(F)fρ ̸=0 ∪ Z(⟨Iρ, fρ⟩)(F).

Regarding the �rst term in the union, the proven injectivity conclusion gives

(12) card(Z(Iρ)(F)fρ ̸=0) ⩽ card(Z(F ρ)(F)) = cρ(F ).

Regarding the second term, we have:

card(Z(⟨Iρ, fρ⟩)(F)) = cρ(⟨I, f⟩).

whence the upper bound part of Lemma 3.4.

2nd part. We construct an injective map Φ from a Zariski-open subset of Z(F ρ)(F) to

Z(Iρ)(F) and deduce the lower bound part of Lemma 3.4.

Consider a (d+ 1)-tuple (τ1, . . . , τd, ξ) ∈ Fd+1 such that

(13) F ρ(τ1, . . . , τd, ξ) = 0

5In the special case d = 0, we have Z(⟨Iρ, fρ⟩) = ∅.
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and

(14) ∆ρ(τ1, . . . , τd) ̸= 0

The morphism ρ : R→ F uniquely extends to a morphism

R[T , Y ]/(F ) → F

sending T to τ = (τ1, . . . , τd) and Y to ξ. As t1, . . . , td are algebraically independent and

that the polynomial F (T , Y ) ∈ R[T , Y ] is irreducible in K[T , Y ] and monic in Y , there is

an isomorphism between the rings R[T , Y ]/(F ) and R[t, α], sending (T , Y ) to (t, α) and

equal to the identity on R. Furthermore, such an isomorphism is unique. This shows that

there is a unique morphism

σ : R[t, α] → F
extending ρ : R → F and sending (t, α) to (τ , ξ). Due to (14), this morphism can be

extended to a morphism σ : R[t,∆(t)−1, α] → F.
From De�nition 3.1, there exist �nitely many elements θ1, . . . , θm ∈ A[∆−1], purely in-

separable over K(t, α), that generate A[∆−1] as a R[t,∆−1, α]-module. The morphism

σ : R[t,∆(t)−1, α] → F can be extended to R[t,∆(t)−1, α][θ1, . . . , θm] = A[∆−1] by extend-

ing it �rst to R[t,∆(t)−1, α][θ1], then to R[t,∆(t)−1, α][θ1, θ2], etc., thanks to the following

classical statement:

(*) Let f : D → C be a ring morphism between a domain D and a �eld C. Let ζ be

algebraic over Frac(D). Assume that the irreducible polynomial Pζ of ζ over Frac(D) is in

D[Y ]. Then the correspondence f̃ → f̃(ζ) between the set of extensions of f to a morphism

f̃ : D[ζ] → C and the set of roots lying in C of the polynomial (Pζ)
f is bijective.

(Merely note that in our situation, for each i = 1, . . . ,m, the irreducible polynomial of θi

is of the form Y pk − β with β = θp
k

i ∈ R[t,∆(t)−1, α] and k ⩾ 0, and that the equation

yp
k − σ(β) = 0 has a unique solution in the �nite �eld F.)

Furthermore, the resulting morphism σ : A[∆−1] → F that extends ρ : R → F and sends

(t, α) to (τ , ξ) is unique.

Set σ(xi mod I) = ωi, i = 1, . . . , r and ω = (ω1, . . . , ωr). The following calculation shows

that ω ∈ Z(Iρ): for P ∈ Iρ, we have:

P ρ(ω) = P ρ(σ(x mod I)) = σ(P (x mod I))

= σ(P (x) mod I) = σ(0 mod I) = 0

Denote by Z(F ρ)(F)∆σ ̸=0 the subset of Fd+1 de�ned by conditions (13), (14) and by

Φ : Z(F ρ)(F)∆σ ̸=0 → Z(Iρ)(F)

the map constructed above that sends every (d+ 1)-tuple (τ , ξ) to the r-tuple ω.

We claim that the map Φ is injective. Namely let (τ , ξ) and (τ ′, ξ′) be two tuples in

Z(F ρ)(F)∆ρ ̸=0. They determine two morphisms σ, σ′ : A → F such that σ(t, α) = (τ , ξ)

and σ′(t, α) = (τ ′, ξ′). By construction, we have Φ(τ , ξ) = σ(x mod I) and Φ(τ ′, ξ′) =

σ′(x mod I). If these two r-tuples are equal, then σ = σ′ and so (τ , ξ) = (τ ′, ξ′).

Conclude that card(Z(Iρ)(F)) ⩾ card(Z(F ρ)(F)∆ρ ̸=0), and so that

□(15) cρ(I) ⩾ cρ(F )− cρ(∆) degY (F ).
6

6In the special case d = 0, condition (14) is void, Z(F ρ)(F)∆σ ̸=0 = Z(F ρ)(F) and cρ(∆) = 0.
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3.3. Proof of the Lang-Weil estimate assuming the case of hypersurfaces. We

retain the notation and assumptions from Sections 3.1�3.2.

De�nition 3.6. The hypersurface degree of the d-dimensional a�ne variety V ⊂ Ar
R is

de�ned to be the smallest degree of some polynomial F ∈ K[T , Y ] such that for some

nonzero c ∈ R, the polynomial F locally represents V as a hypersurface over R[c−1] (in

the sense of De�nition 3.1). We denote it by hdeg(V ).

Remark 3.7.

(a) If R is integrally closed, we have 1 ⩽ hdeg(V ) < +∞ (Lemma 3.3). If V is itself

a hypersurface, then hdeg(V ) ⩽ deg(V ) where deg(V ) is the usual degree, i.e.

the degree of a polynomial de�ning the hypersurface V . This inequality is strict in

general: for example, the hypersurface V ⊂ A2 of equation Y 2+T 4−2T 2Y −T = 0

can be represented by the hypersurface of equation Y 2 − T = 0 and so hdeg(V ) ⩽
2 < deg(V ) = 4.

(b) The hypersurface degree is more intrinsic than the usual degree (which depends on

the embedding V ⊂ Ar): if V1 ⊂ Ar1
R and V2 ⊂ Ar2

R are two d-dimensional a�ne

varieties such that there exist two morphisms ψi : Vi → Ad
R, i = 1, 2, and two

isomorphisms χ : V1 → V2 and λ : Ad
R → Ad

R satisfying ψ2 ◦ χ = λ ◦ ψ1 above

a Zariski-open subset Ad
R \ Z(∆) for some nonzero ∆ ∈ R[T ], then hdeg(V1) =

hdeg(V2).

Our goal is to prove the following statement, which is Corollary 1.5 from Section 1.

Theorem 3.8. Given nonnegative integers d, r and h, there is a positive constant A(r, h)

such that for every �nite �eld Fq of cardinality q = pβ with p prime and β ⩾ 1, and

every prime ideal I ⊂ Fq[x] such that the a�ne variety V = Z(I) ⊂ Ar is geometrically

irreducible, of dimension dim(V ) = d and of hypersurface degree hdeg(V ) = h, we have:

(16) | card(V (Fq))− qd| ⩽ (h− 1)(h− 2) qd−
1
2 +A(r, h) qd−1.

From Remark 3.7, the error term on the right-hand side is smaller, for hypersurfaces, than

the one from the original Lang-Weil estimate.

Proof. Fix an ideal I as in the statement. The proof uses Sections 3.1�3.2. Retain the

notation from there and take R = K = F = Fq. Lemma 3.3 may be applied. Pick a

polynomial F ∈ Fq[T , Y ] such that the polynomial F locally represents V as a hypersurface

and such that deg(F ) = hdeg(V ). Apply Lemma 3.4 with ρ : F → F the identity (so both

fρ and ∆ρ are nonzero in Fq[x]). We obtain:

(17) cρ(F )− degY (F ) cρ(∆) ⩽ cρ(I) ⩽ cρ(F ) + cρ(⟨I, f⟩).

The assumption that V is geometrically irreducible means that the extension L/Fq is

regular (i.e. L ∩ Fq = Fq). It classically follows that [LFq : Fq(t)] = [L : Fq(t)] and so that

F is irreducible in Fq[T , Y ] (e.g. [3, Prop.2.3.2]). Now resort to the paper [2], which covers

the hypersurface case, to assert that there exists a constant A1(r, h) such that

(18) |cρ(F )− qd| ⩽ (h− 1)(h− 2) qd−
1
2 +A1(r, h) q

d−1.

To prove Theorem 3.8, it remains to prove that there exist positive constants A2(r, h) and

A3(r, h) such that

(*) cρ(⟨I, f⟩) ⩽ A2(r, h) q
d−1 and (**) cρ(∆) ⩽ A3(r, h) q

d−1.
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(**) follows from the Zippel-Schwartz lemma (Theorem 2.1): we have cρ(∆) ⩽ deg(∆) qd−1,

and ∆ is the discriminant of F w.r.t. the variable Y , so its degree can be bounded from

above in terms of deg(F ) = hdeg(V ) ⩽ h.

For (*), consider a r-tuple ω in Z(⟨I, f⟩)(F). By de�nition f(ω) = ∆(φ(ω)) = 0. We

obtain that

card
(
φ [Z(⟨I, f⟩)(Fq)]

)
⩽ cρ(∆) ⩽ A3(r, h) q

d−1.

View the d-tuple φ = (φ1, . . . , φd) ∈ R[x]d (de�ned in �3.2) as a morphism φ : Z(I) → Ad.

It is induced by the ring morphism R[t] → R[x mod I] that maps each ti to φi(x mod I),

i = 1, . . . , d. As R[x mod I] = A is a R[t]-module of �nite type, this morphism is �nite.

Thus the �bers are of �nite cardinality, and less than or equal to the generic degree [L :

K(t)] = degY (F ). Whence

card(Z(⟨I, f⟩)(F)) ⩽ degY (F ) card(φ(Z(⟨I, f⟩)(F))) ⩽ hA3(r, h) q
d−1.

□

3.4. Proof of Corollary 1.4. We will deduce it from the following lemma.

Lemma 3.9. Let I ⊂ Z[x] be an ideal such that I ∩ Z = {0}. Set A = Z[x]/I, V = Z(I)

and d = dim(V ). Then we have the following:

(a) there is a constantM =M(I) depending on I such that cp(I) ⩽M pd for all primes

p.

(b) If the ideal I is prime, there is an irreducible polynomial F ∈ Z[T1, . . . , Td, Y ] and

a constant B = B(I) depending on I such that, for all primes p, we have:

|cp(I)− cp(F )| ⩽ B pd−1.

Lemma 3.9(b) is Lemma 1.3 from Section 1 and Lemma 3.9(a) is the generalization to

ideals I of the Zippel-Schwartz upper bound (mentioned after Corollary 1.4).

Proof of Lemma 3.9. Observe �rst that, for any prime p, cp(I) remains the same if I is

replaced by its radical
√
I. Hence assume that I =

√
I. Classically then, I can be written

as the intersection of �nitely many prime ideals Jk (e.g. [3, Thm1.1.11]). If the ideals Jk
are minimal prime ideals, the Zariski-closed subsets Z(Jk) are the irreducible components

of Z(I) and d = dim(V ) is the supremum of the dimensions dim(Z(Jk)). Thus

(*) for proving (a), one may assume that I is a prime ideal and, for the general case,

eventually multiply the constant C obtained in the prime case by the number, say ν, of

irreducible components of V = Z(I) ⊂ Ar.

Preliminary part. Assume that I is a prime ideal. Retain the notation from Sections

3.1�3.2 and assume further that R = Z. From Lemma 3.3, there exists a nonzero element

c ∈ Z, such that, over the ring Z[c−1], the a�ne variety V ⊂ Ar can be represented as a

hypersurface above a Zariski-open Ad \Z(∆) (for some nonzero ∆ ∈ Z[t]). Denote as usual
by F ∈ Z[c−1][T1, . . . , Td, Y ] a monic polynomial de�ning the hypersurface.

Apply Lemma 3.4 with F = Fp, ρ : Z → Fp the reduction morphism and p a prime such

that c, f , ∆ are nonzero modulo p; this only excludes �nitely many p. Lemma 3.4 yields:

(19) −degY (F ) cp(∆) ⩽ cp(I)− cp(F ) ⩽ cp(⟨I, f⟩).

At this point, distinguish two cases:
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1st case: (f mod I) is a unit of A[c−1]. Then, for every ω ∈ Z(I mod p)(Fp), the element

(f mod I)(ω) is non-zero in Fp
7, and so the set Z(⟨I, f⟩ mod p)(Fp) is empty, i.e.

(20) cp(⟨I, f⟩) = 0.

2nd case: (f mod I) is not a unit of A[c−1]. As (f mod I) is non-zero in A[c−1] (as noted

in (9)) and that A[c−1] is an integral domain, (f mod I) is not either a zero divisor. Thus

Krull's Hauptidealsatz [7, Theorem 1.11A] may be applied to conclude that every minimal

prime ideal of A[c−1] containing (f mod I) is of height 1. In particular, the Zariski-closed

subset Z(⟨I, f⟩) is of dimension dim(V )− 1 = d− 1.

Proof of (a). Let I be an ideal as in Lemma 3.9 (not necessarily prime). The proof goes

by induction on d = dim(V ).

Assume d = 0. Assume �rst that I is a prime ideal. Then I is maximal (as A/I being of

Krull dimension d = 0 implies that A/I is a �eld). Fix a prime p. If cp(I) ̸= 0, then the

ideal I is contained in the maximal ideal Iω ⊂ Z[x] annihilating some ω ∈ Fr
p. Conclude

that I = Iω and so that cp(I) = 1. Thus cp(I) equals 0 or 1 for every prime p. One may

take M(I) = 1, when I is prime, and M(I) = ν in the more general case (from (*) above).

Assume that d ⩾ 1. Again assume �rst that I is a prime ideal and use the preliminary

part. Let p be a prime number such that c, f and ∆ are all nonzero modulo p. From

display (19), combined with the Zippel-Schwartz lemma (Theorem 2.1), we have:

(21) cp(I) ⩽ deg(F ) pd + cp(⟨I, f⟩).

Furthermore, either cp(⟨I, f⟩) = 0, or Z(⟨I, f⟩) is of dimension d − 1, in which case the

induction hypothesis gives

(22) cp(⟨I, f⟩) ⩽M(⟨I, f⟩) pd−1

(whereM(⟨I, f⟩) is the constant associated to the ideal ⟨I, f⟩ in the induction hypothesis).

Displays (21), (22) �nish the induction: taking (*) into account, one may take M(I) any

constant ⩾ ν × (deg(F ) +M(⟨I, f⟩)), and ⩾ cp(I)/p
d for all the �nitely many primes p

excluded in the preliminary part.

Proof of (b). Here assume that I ⊂ Z[x] is a prime ideal. The requested conclusion follows

from the double inequality (19) from the preliminary part. Namely, from the already proven

part (a), we have cp(⟨I, f⟩) ⩽ M(⟨I, f⟩) pd−1, and from the Zippel-Schwartz lemma, we

have cp(∆) ⩽ deg(∆) pd−1, both for all primes p. 8

Note �nally that for the polynomial F to have coe�cients in Z as claimed, instead of Z[c−1]

as constructed, it su�ces to multiply it by a suitably big power of c. This does not a�ect

the required conclusion, except possibly for the �nite list of prime divisors of c, for which

we may still keep the conclusion valid by enlarging the constant B. □

Finally we can prove Corollary 1.4 from Section 1, which we restate:

Corollary 1.4. The series
∑
p∈P

cp(I)

pd+1
is divergent.

7With the notation from the proof of Lemma 3.4, (f mod I)(ω) is ρ(f mod I), with ρ : A → Fp the
prolongation of ρ : R → F de�ned there.

8In the special case d = 0, the polynomial ∆ is a nonzero constant that remains nonzero modulo p, so
cp(∆) = 0 which is indeed ⩽ A2 deg(∆) p0−1 for every p.
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Proof. Rewrite the conclusion of Lemma 3.9(b) as∣∣∣∣cp(I)pd+1
− cp(F )

pd+1

∣∣∣∣ ⩽ B

p2
for all primes p.

The requested conclusion follows from this conclusion, combined with the fact, already

proved as Theorem 1.1, that the series
∑

p∈P
cp(F )
pd+1 is divergent. □

3.5. Variety variants of the Ostrowski theorem and the Lang-Weil lower bound.

This subsection shows how to use Lemma 3.3 to extend to varieties two further statements

known for hypersurfaces. In the �rst one (Corollary 3.10) it is the Ostrowski theorem that

is extended, in the second one (Corollary 3.12), it is the Lang-Weil lower bound.

Corollary 3.10. Let k be a number �eld and O be its ring of integers. Let I ⊂ O[x] be an

ideal such that I ∩ O = {0} and I ⊗O k is a prime ideal of k[x]. Then for all but �nitely

many prime ideals p ⊂ O, the ideal (I mod p) generates a prime ideal of (O/p)[x].

Equivalently, for the same prime ideals p, the Zariski-closed subsets Z(I mod p) are geo-

metrically irreducible varieties.

The classical Ostrowski theorem is the special case that I is generated by a single polyno-

mial F ∈ O[x], i.e. V = Z(I) is a hypersurface. The presented generalization was known

before (e.g. [6, Corollary 10.4.3]), and obtained, as we will present too, by reduction to the

classical case. We include it here as a further self-contained illustration of our approach;

the proof given in [6] uses some model theory.

Proof. Set V = Z(I) ⊂ Ar
O and d = dim(V ). From Lemma 3.3, there exist c ∈ O, c ̸= 0

and an irreducible polynomial F ∈ O[T , Y ] (with T = (T1, . . . , Td)), monic in Y such that

the a�ne variety V can be locally represented as the hypersurface Z(F ) ⊂ Ad+1
O over the

ring O[c−1]. As noted in Remark 3.2, there is a �nite morphism V → Ad such that,

(*) above some open subset Ad \ Z(∆) with ∆ ∈ O[c−1][T ], ∆ ̸= 0, the a�ne variety V is

isomorphic to the hypersurface Z(F ).

The classical Ostrowski theorem asserts that for all but �nitely many primes p ⊂ O, the

polynomial (F mod p) is irreducible in kp[T , Y ], where kp is the �nite �eld O/p. Equiva-

lently, Z(F )⊗O kp is irreducible. It follows from (*) that for all prime ideals p ⊂ O but in

a �nite list including those that divide c, the Zariski-closed subset V ⊗O kp is irreducible

as well, which is equivalent to (I mod p) generating a prime ideal of kp[x]. □

Remark 3.11. We restricted to the Ostrowski version of the Bertini-Noether theorem for

simplicity. The same argument yields a similar �variety version� of the full Bertini-Noether

theorem (as in [6, Prop.10.4.2]). The ring O can be taken any integrally closed domain

and k its fraction �eld. In the conclusion, �for all but �nitely many prime ideals p ⊂ O�

should be replaced by �for all prime ideals p ⊂ O but in a Zariski-closed subset of SpecO�.

Our �nal application is this generalization of the Lang-Weil lower bound from Section 1.

Corollary 3.12. Let I ⊂ Z[x] be an ideal such that I ∩ Z = {0}. Set V = Z(I) and

d = dim(V ). Then for every ε > 0, there exist in�nitely many primes p such that

cp(I) ⩾ (1− ε) pd.

Proof. Combine the argument given in Section 2.5 in the case that V is a hypersurface

with Lemma 1.3 to reduce to that situation. □
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