INVARIANCE OF MILNOR NUMBERS
AND TOPOLOGY OF COMPLEX POLYNOMIALS

ARNAUD BODIN

ABSTRACT. We give a global version of Lé-Ramanujam p-constant theorem for
polynomials. Let (f;), ¢t € [0,1], be a family of polynomials of n complex variables
with isolated singularities, whose coefficients are polynomials in ¢t. We consider
the case where some numerical invariants are constant (the affine Milnor number
u(t), the Milnor number at infinity A(¢), the number of critical values, the number
of affine critical values, the number of critical values at infinity). Let n = 2,
we also suppose the degree of the f; is a constant, then the polynomials fo and
f1 are topologically equivalent. For n > 3 we suppose that critical values at
infinity depend continuously on ¢, then we prove that the geometric monodromy
representations of the f;, are all equivalent.

1. INTRODUCTION

Let f: C* — C be a polynomial map, n > 2. By a result of Thom [Th] there is
a minimal set of critical values B of point of C such that f: f~'(C\ B) — C\ B
is a fibration.

1.1. Affine singularities. We suppose that affine singularities are isolated 1.e.
that the set {x € C" | grad;z = 0} is a finite set. Let . be the sum of the local
Milnor numbers at the points of f~1(c). Let

By ={c|p.>0} and ,u:ZuC

ceC

be the affine critical values and the affine Milnor number.

1.2. Singularities at infinity. See [Br]. Let d be the degree of f : C* — C, let
f=f"+ fi=t + ...+ f9 where f7 is homogeneous of degree j. Let f(z,x0) (with
x = (v1,...,7,)) be the homogenization of f with the new variable zo: f(x,z) =
fz) + fY2)zo + ... + fOx)ad. Let

X ={((z:20),¢) €P" x C | f(x,20) — cx] =0} .
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Let H be the hyperplane at infinity of P defined by (zo = 0). The singular locus
of X has the form ¥ x C where
afe of’ L
Sed@.o) | 2= 22 - .
{(37 ) 81‘1 al‘n f cH

We suppose that f has isolated singularities at infinity that is to say that X is finite.
This is always true for n = 2. For a point (z : 0) € Heo, assume, for example, that
x=(21,...,Tp_1,1) and set & = (xq,...,2,_1) and

F(2,20) = f(z1,...,0,_1,1) — czl.

Let pz(F,) be the local Milnor number of F, at the point (#,0). If (x : 0) € X then
pz(Fe) > 0. For a generic s, uz(Fs) = vz, and for finitely many ¢, pz(F.) > vz. We
set, )\c,:i = /L:E(Fc) — V;, )\c = Z(x:O)EE )\c@-. Let

Bo={ce€C|XA>0} and A=) X

ceC

be the critical values at infinity and the Milnor number at infinity. We can now
describe the set of critical values B as follows (see [HL] and [Pal):

B =B, UB..

Moreover by [HL] and [ST] for s ¢ B, f~'(s) has the homotopy type of a wedge of
A+ p spheres of real dimension n — 1.

1.3. Statement of the results.

Theorem 1. Let (f;)icjo) be a family of complex polynomials from C* to C whose
coefficients are polynomials in t. We suppose that affine singularities and singulari-
ties at infinity are isolated. Let suppose that the integers pu(t), A(t), #B(t), #B.g(t),
#Bo(t) do not depend on t € [0,1]. Moreover let us suppose that critical values at
infinity Bso(t) depend continuously on t. Then the fibrations fy : f, *(C\ B(0)) —
C\ B(0) and f, : f{'(C\ B(1)) — C\ B(1) are fiber homotopy equivalent, and for
n # 3 are differentiably isomorphic.

Remark 1. As a consequence for n # 3 and * ¢ B(0) U B(1) the monodromy repre-
sentations

7 (C \ B(0), x) — Diff(f; " (x)) and
m(C\ B(1),+) — Diff(f, ' (x))

are equivalent (where Diff(f;"'(x)) denotes the diffeomorphisms of f;'(*) modulo
diffeomorphisms isotopic to identity).

Remark 2. The restriction n # 3, as in [LR], is due to the use of the h-cobordism
theorem.
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Remark 3. This result extends a theorem of Ha H.V and Pham T.S. [HP] which deals
only with monodromy at infinity (which correspond to a loop around the whole set
B(t)) for n = 2. For n > 3 the invariance of monodromy at infinity is stated by
M. Tibar in [Ti]. The proof is based on the articles of Ha H.V.-Pham T.S. [HP] and
of Lé D.T.-C.P. Ramanujam [LR).

Lemma 2. Under the hypotheses of the previous theorem (except the hypothesis of
continuity of the critical values), and one of the following conditions:

e n =2, and deg f; does not depend on t;
e deg f;, and X(t) do not depend on t, and for all (x : 0) € X(t), vi(t) is
independent of t;
we have that By (t) depends continuously on t, i.e. if ¢(T) € Buy(7) then for all t
near T there exists c(t) near ¢(7) such that c(t) € Byo(t).

Under the hypothesis that there is no singularity at infinity we can prove the
stronger result:

Theorem 3. Let (fi)icoq be a family of complex polynomials whose coefficients are
polynomials in t. Suppose that ju(t), #By(t) do not depend on t € [0,1]. Moreover
suppose that n # 3 and for all t € [0,1] we have By (t) = @. Then the polynomials
fo and f1 are topologically equivalent that is to say there exists homeomorphisms ®
and U such that

o on

o s

CT>C.

For the proof we glue the former study with the version of the p-constant theorem
of Lé D.T. and C.P. Ramanujam stated by J.G. Timourian [Tm]: a p-constant
deformation of germs of isolated hypersurface singularity is a product family.

For polynomials in two variables we can prove the following theorem which is a
global version of LLe-Ramanujam-Timourian theorem:

Theorem 4. Letn = 2. Let (fi)ico,1) be a family of complex polynomials whose coef-
ficients are polynomials in t. Suppose that the integers pu(t), A(t), #B(t), #B.y(t),
#B(t), deg fi do not depend on t € [0,1]. Then the polynomials fo and f; are
topologically equivalent.

It uses a result of L. Fourrier [Fo| that give a necessary and sufficient condition

for polynomials to be topologically equivalent outside sufficiently large compact sets
of C2.

This work was initiated by an advice of Lé D.T. concerning the article [Bo]: “It is
easier to find conditions for polynomials to be equivalent than find all polynomials
that respect a given condition.”
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We W111 denote B = {z € C" | ||lz|| < R}, Sg = 0Br = {z € C" | ||lz|| = R}
and D,(c) = {s€C||ls—c|| <r}.

2. FIBRATIONS

In this paragraph we give some properties for a complex polynomial f : C* — C.
The two first lemmas are consequences of transversality properties. There are direct
generalizations of lemmas of [HP]. Let f be a polynomial of n complex variables
with isolated affine singularities and with isolated singularities at infinity. For each
fiber f~!(c) there is a finite number of real numbers R > 0 such that f~!(c) has
non-transversal intersection with the sphere Si. So for a sufficiently large number
R(c) the intersection f~'(c) with S is transversal for all R > R(c). Let R; be
the maximum of the R(c) with ¢ € B. We choose a small £, 0 < ¢ < 1 such that
for all values ¢ in the bifurcation set B of f and for all s € D.(c) the intersection
f7'(s) N Sg, is transversal, this is possible by continuity of the transversality. Let
choose r > 0 such that B is contained in the interior of D,(0). We denote

0\ [J D-(e)

ceB

Lemma 5. There exists Ry > 1 such that for all R > Ry and for all s in K, f~'(s)
intersects Sg transversally.

Proof. We have to adapt the beginning of the proof of [HP]. If the assertion is false
then we have a sequence (xy) of points of C" such that f(xy) € K and ||zx|| — +o0
as k — +oo and such that there exists complex numbers )\ with grad; =), = A7y,
where the gradient is Milnor gradient: grad, = (g—xfl, cee %) . Since K is a compact
set we can suppose (after extracting a sub-sequence, if necessary) that f(xy) — ¢ €
K as k — +oo. Then by the Curve Selection Lemma of [NZ] there exists a real
analytic curve z :]0,e[— C" such that z(7) = a7® + a; 7! + -+ with 3 < 0,
a € R**\ {0} and grad; z(7) = A(7)x(7). Then f(z(r)) = c+ 177+ with p > 0.
Then we can redo the calculus of [HP]:

df(dT( _ <_,gradf (7)) :)\(7)<2—i,x(7)>

it implies

dlz(7)[]® *
dr

As ||lz(7)|| = bim? + -+ with by € R, and 8 < 0 we have |\(7)] < szﬁ—l = yrP=28
where v is a constant. We end the proof be using the characterization of critical
value at infinity in [Pa]:

()1 grad, 2 (r)l| = [lo(D)I" MA@ ()] < 4707
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As p>0and 8 <0, for all N > 0 we have that ||z(7)||'~"/"| grad; z(7)|| — 0 as
7 — 0. By [Pa] it implies that the value ¢ (the limit of f(z(7)) as 7 — 0) is in By.
But as ¢ € K it is impossible. (]

This first lemma enables us to get the following result: because of the transversal-
ity we can find a vector field tangent to the fibers of f and pointing out the spheres
Sk. Integration of such a vector field gives the next lemma.

Lemma 6. The fibrations f : f~'(K)N Br, — K and f : f~'(K) — K are
differentiably isomorphic.

We will also need the following fact:

Lemma 7. The fibrations f : f~'(K) — K and f : f7'(C\ B) — C\ B are

differentiably isomorphic.
The following lemma is adapted from [LR]. For completeness we give the proof.

Lemma 8. Let R, R with R > R' be real numbers such that the intersections
fHUK)N Sk and f~H(K) N S are transversal. Let us suppose that f: f~1(K) N
Br — K and f : f~'(K) N Bgr — K are fibrations with fibers homotopic to
a wedge of v (n — 1)-dimensional spheres. Then the fibrations are fiber homotopy
equivalent. And for n # 3 the fibrations are differentiably equivalent.

Proof. The first part is a consequence of a result of A. Dold [Do, th. 6.3]. The first
fibration is contained in the second. By the result of Dold we only have to prove
that if ¥ € 9D, then the inclusion of F' = f~'(x) N Bg in F = f~!'(x) N Bp is
an homotopy equivalence. To see this we choose a generic x in C" such that the
real function = — ||z — x| has non-degenerate critical points of index less than n
(see [M1, §7]). Then F is obtained from F’ by attaching cells of index less than n.
For n = 2 the fibers are homotopic to a wedge of v circles, then the inclusion of F’
in F' is an homotopy equivalence. For n > 2 the fibers F, F" are simply connected
and the morphism H;(F') — H;(F) induced by inclusion is an isomorphism. For
i # n — 1 this is obvious since F' and F’ have the homotopy type of a wedge of
(n — 1)-dimensional spheres, and for i = n — 1 the exact sequence of the pair (F, F")
is
H,(F,F') — H, (F) — H, (F') — H, ((F,F")

with H,(F,F') =0, H,_(F) and H,_;(F") free of rank v, and H,,_,(F, F') torsion-
free. Then the inclusion of F’ in F' is an homotopy equivalence.

The second part is based on the h-cobordism theorem. Let X = f~'(K)NBg\Bg,
then as f has no affine critical points in X (because there is no critical values in
K) and f is transversal to f~'(K) N Sk and to f~'(K) N Sk then by Ehresmann
theorem f : X — K is a fibration. We denote F\F’ by F*. We get an isomorphism
H;(OF'") — H;(F*) for all i because H;(F*,0F') = H;(F,F') = 0. For n = 2 it
implies that F* is diffeomorphic to a product [0, 1] x OF". For n > 3 we will use the



Invariance of Milnor numbers 6

h-cobordism theorem to F* to prove this. We have 0F* = 0F'UOF; OF" and OF are
simply connected: if we look at the function x +— —||z — x¢|| on f~!(x) for a generic
Tg, then F' = f~!(x)NBg and F' = f~'(*)N Bpg are obtained by gluing cells of index
more or equal to n — 1. So their boundary is simply connected. For a similar reason
F* is simply connected. As we have isomorphisms H;(0F') — H;(F*) and both
spaces are simply connected then by Hurewicz-Whitehead theorem the inclusion of
OF" in F* is an homotopy equivalence. Now F*, OF', OF are simply connected,
the inclusion of 0F' in F* is an homotopy equivalence and F* has real dimension
2n—2 > 6. So by the h-cobordism theorem [M2] F* is diffeomorphic to the product
[0,1] x OF'. Then the fibration f : X — K is differentiably equivalent to the
fibration f : [0,1] x (f~'(K)NSgr) — K so the fibrations f : f~'(K)NBr — K
and f: f7'(K) N Brp — K are differentiably equivalent. O

3. FAMILY OF POLYNOMIALS
Let (fi)icr0,1) be a family of polynomials that verify hypotheses of theorem 1.

Lemma 9 ([HP]). There exists R > 1 such that for all t € [0,1] the affine critical
points of f; are in Bg.

Proof. Tt is enough to prove it on [0, 7] with 7 > 0. We choose R > 1 such that all
the affine critical points of fy are in Bg. We denote

_ grad,,
[ grady, |

Then deg ¢y = 11(0). For all z € Sg, grad; x # 0, and by continuity there exist
7 > 0 such that for ¢ € [0,7] and all z € Sg, grad;, xz # 0. Then the maps ¢
are homotopic (the homotopy is ¢ : S x [0, 7] — S} with ¢(z,t) = ¢(x)). And
then u(0) = deg oy = deg ¢y < u(t). If there exists a family z(t) € C* of affine
critical points of ¢, such that ||z(¢)|| — 400 as t — 0, then for a sufficiently small
t, z(t) ¢ Br and then u(t) > deg ¢;. It contradicts the hypothesis p(0) = u(¢). O

t :SR—>SI-

Lemma 10. There exists r > 1 such that the subset {(c,t) € D,(0) x [0,1] | ¢ €
B(t)} is a braid of D,(0) x [0,1].

It enables us to choose x € 9D,(0) which is a regular value for all f;, ¢t € [0, 1].
In other words if we enumerate B(0) as {¢1(0),...,¢,(0)} then there is continuous
functions ¢; : [0,1] — D, (0) such that for i # j, ¢;(t) # ¢;(¢). This enables us to
identify m (C \ B(0),*) and m (C\ B(1), *).

Proof. Let 7 be in [0, 1] and ¢(7) be a critical value of f; then for all ¢ near 7 there
exists a critical value ¢(t) of f;. It is an hypothesis for the critical values at infinity
and this fact is well-known for affine critical values as the coefficients of f; are smooth
functions of ¢, see for example [Br, Prop. 2.1].
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Moreover by the former lemma there can not exist critical values that escape at
infinity i.e. a 7 € [0,1] such that |¢(¢t)| — 400 as t — 7. For affine critical values
it is a consequence of the former lemma (or we can make the same proof as we now
will perform for the critical values at infinity). For B () let us suppose that there is
critical values that escape at infinity. By continuity of the critical values at infinity
with respect to ¢ we can suppose that there is a continuous function cy(t) on |0, 7]
(1 > 0) with ¢y(t) € By (t) and |c(t)| — +o0 as t — 0. By continuity of the critical
values at infinity, if B (0) = {¢1(0),...,¢,(0)} there exist continuous functions ¢; (1)
on [0,7] such that ¢;(t) € By(t) for all i = 1,...,p. And for a sufficiently small
t >0, cot) # c(t) (1 =1,...,p) then #B,(0) < #B(t) which contradicts the
constancy of #Bx(t).

Finally there can not exist ramification points: suppose that there is a 7 such
that ¢;(7) = ¢;(7) (and ¢;(t), c;(t) are not equal in a neighborhood of 7). Then if
ci(1) € By (1) \ Boo(T) (resp. Beo(T) \ Bagr (7), Boo(7) N By (7)) there is jump in
#B,g (t) (resp. #Boo(t), #B(t)) near 7 which is impossible by assumption. O

Let Ry, K, D,(0), D.(c) be the objects of the former section for the polynomial
f = fo. Moreover we suppose that Ry is greater than the R obtained in lemma 9.

Lemma 11. There exists T €]0, 1] such that for all t € [0, 7] we have the properties:
e ¢i(t) € D.(¢;(0)),i=1,...,m;
o for all s € K, f7'(s) intersects Sg, transversally.

Proof. The first point is just the continuity of the critical values ¢;(¢). The second
point is the continuity of transversality: if the property is false then there exists
sequences tp — 0, z;, € Sg, and A\ € Csuch that gradftk T = M\, We can suppose
that (zy) converges (after extraction of a sub-sequence, if necessary). Then z;, — x €
SRos gradftk z, — grad, x, and A\, = (gradftk x| o)/ ||zk||? = <gradftk T | 21)/ Ro?
converges toward A € C. Then grad; = = Az and the intersection is non-transversal.

O

Lemma 12. The fibrations fy : f3 '(K)N Bg, — K and f, : f7'(K)N Bg, — K
are differentiably isomorphic.

Proof. Let
F:C"x[0,1] — C x [0,1], (z,t) = (fi(x),1).

We want to prove that the fibrations Fy : ¥o = F~'(K x {0}) N (Bg, x {0}) — K,
(2,0) = fo(z) and F, : &, = F YK x {t}) N (B, x {7}) — K, (z,7) = f;(x)
are differentiably isomorphic. Let denote [0, 7] by I. Then F has maximal rank on
F~'(K xI)N(Bg, x I) and on the boundary F~'(K x I)N(Sg, x I). By Ehresmann
theorem F': F~Y(K x I)N(Bg, x [) — K x I is a fibration. But we can not argue
as in [LR] since the restriction of F on the set {(z,t) € Sg, x I | fi(z) € D,(0)} is
not a trivial fibration.
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As in [HP] we build a vector field that give us a diffeomorphism between the two
fibrations Fy and F,. Let Ry be a real number close to Ry such that Ry < Ry.
On the set F~'(K x I) N (Ury,<r<rySr X I) we build a vector field v; such that for
2 € SpxI (Ry < R < Ry), v1(2) is tangent to Sg x I and we have d,F.v1(z) = (0, 1).
On the set F~'(K x I) N (Bg, x I) with Ry, < Ry < Ry we build a second vector
field vy such that d,F.vy(z) = (0, 1), this is possible because F' is a submersion on
this set.

By gluing these vector fields v; and vy by a partition of unity and by integrating the
corresponding vector field we obtain integral curves p, : R — F1(K x I)NBp, x I
for z € ¥y such that p,(0) = 2z and p,(r) € X,. It induces a diffeomorphism
® : ¥y — X, such that Fy = F; o ®; that makes the fibrations isomorphic. Il

Proof of theorem 1. 1t suffices to prove the theorem for an interval [0, 7] with 7 > 0.
We choose 7 as in lemma 11. By lemma 7, f, : f~}(C\ B(0)) — C\ B(0) and
fo: fi'(K) — K are differentiably isomorphic fibrations. Then by lemma 6, the
fibration fy : f, '(K) — K is differentiably isomorphic to f : f, ' (K) ﬂéRO — K
which is, by lemma 12 differentiably isomorphic to f, : f='(K) N éRO — K.

By continuity of transversality (lemma 11) f~'(K) has transversal intersection
with Sg,, we choose a large real number R (by lemma 5 applied to f,) such that
71 (K) intersects Sk transversally. The last fibration is fiber homotopy equivalent to
fr o f7YK)NBr — K: it is the first part of lemma 8 because the fiber f7! ()N Bg,
is homotopic to a wedge of 11(0) 4+ A(0) circles and the fiber f='(x) N Bg is homotopic
to a wedge of p(7) + A(7) circles; as (0) + A(0) = p(7) + A(7) we get the desired
conclusion. Moreover for n # 3 by the second part of lemma 8 the fibrations are
differentiably isomorphic.

Applying lemma 6 and 7 to f, this fibration is differentiably isomorphic to f, :
f7H(C\ B(r)) — C\ B(7). As a conclusion the fibrations f, : f; '(C\ B(0)) —
C\ B(0) and f, : f-1(C\ B(r)) — C\ B(7) are fiber homotopy equivalent, and for
n # 3 are differentiably isomorphic O

4. AROUND AFFINE SINGULARITIES

We now work with ¢ € [0, 1]. We suppose in this paragraph that the critical values
B(t) depend analytically on ¢ € [0, 1]. This enables us to construct a diffeomorphism:

x:Cx[0,1] — Cx[0,1], with x(z,t) = (xu(2),1),

such that xo = id and x;(B(t)) = B(0). We denote x; by ¥, so that ¥ : C — C
verify W(B(1)) = B(0). Moreover we can suppose that x; is equal to id on C\ D,.(0)
this is possible because for all t € [0,1], B(t) C D,(0). Finally x defines a vector
field w of C x [0, 1] by ‘Z—’f.
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We need a non-splitting of the affine singularity, this principle has been proved
by C. Has Bey ([HB], n = 2) and by F. Lazzeri ([Lal, for all n).

Lemma 13. Let x(1) be an affine singular point of f, and let U, be an open neigh-
borhood of x(7) in C* such that x:(T) is the only affine singular point of f. in U,.
Suppose that for all t closed to T, the restriction of f; to U, has only one critical
value. Then for all t sufficiently closed to T, there is one, and only one, affine
singular point of f; contained in U..

So we can enumerate the singularities: if we denote the affine singularities of f; by
{z;(0)};cs then there is continuous functions z; : [0, 1] — C" such that {z;(¢)}ics
is the set of affine singularities of f;. Let us notice that there can be two distinct
singular points of f; with the same critical value. We suppose that (f;) verifies the
hypotheses of theorem 1, that n # 3, and B(¢) depends analytically on ¢. This
and the former lemma imply that for all ¢ € [0, 1] the local Milnor number of f; at
x(t) is equal to the local Milnor number of fy at 2:(0). The improved version of Lé-
Ramanujam theorem by J.G. Timourian [Tm]| for a family of germs with constant
local Milnor numbers proves that (f;) is locally a product family.

Theorem 14 (Lé-Ramanujam-Timourian). Let z(t) be a singular points of f;.
There exists Uy, V; neighborhoods of x(t), fi(x(t)) respectively and an homeomor-
phism Q™ such that if U = Useioy Ur x {t} and V= U, Vi x {t} the following
diagram commutes:
U ﬂ> UO X [07 ]-]
FL lfoXid
In particular it proves that the polynomials f, and f; are locally topologically

equivalent: we get an homeomorphism ®;, such that the following diagram com-
mutes:

b
Ul in UO

Al

VlTVO-

By lemma 9 we know that for all ¢ € [0,1], B(¢t) C D,(0). We extend the definition
of Ry and Ry to all f;. Be continuity of transversality and compactness of [0, 1] we
choose Ry such that

Vee B(0) YR>R, fy'(c)hSg and Vte[0,1] Vee B(t) f7'(c)h Sg,.
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For a sufficiently small ¢ we denote
E©0)=D,0)\ |J Do), K(t)=x;"(K(0)
c€Bso(0)
and we choose Ry > R, such that
Vs€ K(t) YR>Ry fy'(s)mMSg and Vte€[0,1] Vse K(t) f '(s)h Sg,.
We denote )
B, = Bg, U (f; "(K(t)) N Bg,), t€]0,1].

Lemma 15. There exists an homeomorphism ® such that we have the commutative
diagram:

P
By By

T

Dr(o) e Dr(o)

Proof. We denote by U’ a neighborhood of z(t) such that U] C U,. We denote by
U, (resp. U]), the union (on the affine singular points of f; ) of the U; (resp. Uj).
We set

B! =B/ \U,, te]|0,1].
We can extend the homeomorphism & of lemma 12 to ®,y : BY — B{. We just
have to extend the vector field of lemma 12 to a new vector field denoted by v’ such
that
v’ is tangent to OU,
v’ is tangent to Sg, x [0,1] on F~1(D,(0) \ K(¢) x {t}) for all t € [0,1],
v’ is tangent to Sg, x [0,1] on F~ (K (t) x {t}) for all ¢.
d.F'(z) = w(F(2)) for all = € o, B’ x {t}, which means that ®ou
respect the fibrations.
If we set B" = Ute[O,l] B} x {t} the integration of v’ gives Quy; and @y, such that:

Q q’out

B —2"~ Bl x [0, 1] By 2. pr
Fl J{foXid fll lfo
C x [0,1] — C x [0, 1], D,(0) — D, (0).

We now explain how to glue ®;, and ®,,; together. We can suppose that there
exists spheres S; centered at the singularities z(t) such that if S = {J,cjo 1 S x {t}
QS — Sy x [0,1] and Q' : S — Sy x [0,1]. It defines Qi* : S; — Sy and
Qe S, — Sp. Now we define

O;: 51 — Sy, Oy = Q"o ()™ o Dy
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Then Oy = Py, and O = &;,. On a set homeomophic to S x [0, 1] included in
Ute[O,I] U\ U] we glue ®;, to @4, moreover this gluing respect the fibrations fy and
fi.- We end by doing this construction for all affine singular points. O

Proof of theorem 3. We firstly prove that affine critical values are analytic functions
of t. Let ¢(0) € By (0), the set {(c(t),t) | ¢ € [0,1]} is a real algebraic subset of
Cx [0, 1] as all affine critical points are contained in Bg, (lemma 9). In fact there is
a polynomial P € C[z,t] such that (¢ = 0) is equal to (P = 0) N C x [0, 1]. Because
the set of critical values is a braid of C x [0,1] (lemma 10) then ¢: [0,1] — Cis a
smooth analytic function.

If we suppose that By (t) = @ for all ¢t € [0,1] then by lemma 6 we can extend
®: B, — B to ®: f7'(D,(0)) — f3'(D-(0)). And as B(t) C D,(0) by a lemma
similar to lemma 7 we can extend the homeomorphism to the whole space. (]

5. POLYNOMIALS IN TWO VARIABLES

We set n = 2. Let f, : C2 — C such that the coefficient of this family are
algebraic in ¢. We suppose that the integers pu(t), A(t), #B(t), #Buy(t), #Boo(t) do
not depend on ¢ € [0, 1]. We also suppose the deg f; does not depend on t.

We recall a result of L. Fourrier [Fo]. Let f : C* — C with set of critical values
at infinity By. Let * ¢ B and Z = f~'(x) UU.p. f'(c). The total link of f is
Ly = Z N Sk for a sufficiently large R. To f we associate a resolution ¢ : ¥ — P!,
the components of the divisor of this resolution on which ¢ is surjective are the
dicritical components. For each dicritical component D we have a branched covering
¢ : D — P'. If the set of dicritical components is Dg;. we then have the restriction
of ¢, dgic : Daic — P'. The 0-monodromy representation is the representation

m(C\ B) — Aut (¢;i(1:(*)).

Theorem 16 (Fourrier). Let f,g be complex polynomials in two wvariables with
equivalent 0-monodromy representations and equivalent total links then there exist
homeomorphisms ® and Vo, and compact sets C,C" of C* that make the diagram
commuting:

Q\C 2=\ ¢

1| |o

C C.

Voo

For our family (f;), by theorem 1 we know that the geometric monodromy repre-
sentations are all equivalent, it implies that all the 0-monodromy representations of
(f:) are equivalent. Moreover if we suppose that for any ¢,¢ € [0,1] the total links
Ly, and Ly, are equivalent, then by the former theorem the polynomials f; and fy
are topologically equivalent out of some compact sets of C2. We need a result a bit
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stronger which can be proved by similar arguments than in [Fo] and we will omit
the proof:

Lemma 17. Let (fi)icpo] be a polynomial family such that the coefficients are al-
gebraic functions of t. We suppose that the O-monodromy representations and the
total links are all equivalent. Then there exists compact sets C(t) of C* and an
homeomorphism Q> such that if C = Uy C(t) x {t} we have a commutative
diagram:

C2 x [0,1]\ € =2\ C(0) x [0, 1]

Fl lfoxid
[

C x [0,1] C x [0, 1].

X
We now prove a strong version of the continuity of critical values.

Lemma 18. The critical values are smooth analytic functions of t. Moreover for
c(t) € B(t), the integer ey and Aoy do not depend on t € [0, 1].

Proof. For affine critical values, refer to the proof of theorem 3. The constancy of
Le(ry 18 a consequence of lemma 9 and lemma 13. For critical values at infinity we
need a result of [Ha] and [HP] that enables to calculate critical values and Milnor
numbers at infinity. As deg f; is constant we can suppose that this degree is deg, f;.
Let denote A(z, s,t) the discriminant Disc, (f;(x, y) —s) with respect to y. We write

Az, s,t) = qi(s, t)xk(t) + (s, t)xk(t)*l I

First of all A has constant degree k(t) in & because k(t) = u(t) + \(t) + deg f; — 1
(see [HP]). Secondly by [Ha] we have

Boo(t) = {s | ai(s,t) = 0}
then we see that critical values at infinity depend continuously on ¢ and that critical
values at infinity are a real algebraic subset of Cx [0, 1]. For the analicity we end as in
the proof of theorem 3. Finally, for a fixed ¢, we have that A\, = k(t) —deg, A(x, ¢, t).
In other words ¢;(¢,c) is zero for i = 1,..., A\, and non-zero for i = A\, + 1. For
c(t) € Bo(t) we now prove that A,y is constant. The former formula proves that
A1) 1s constant except for all but finitely many 7 € [0, 1] for which Ae(ry 2 Ac(t)-
But if Ayz) > Ay then A(7) = ZceBmm Ae > Ecegm(t) Ae = A(t) which contradicts
the hypotheses. O

To apply lemma 17 we need to prove:
Lemma 19. For any t,t' € [0,1] the total links Ly, and Ly are equivalent.

Proof. The problem is similar to the one of [LR] and to lemma 8. For a value ¢(t) in
By (t) or equal to *, we have that the link at infinity f;'(c(0)) NS, is equivalent to
the link f;'(c(1)) NSk, (lemma 15). But f;'(c(1)) NSk, is not necessarily the link
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at infinity for f; *(c(1)). We now prove this fact; let denote ¢ = ¢(1). Let Ry > Ry
such that for all R > Ry, fi'(c) h Sg, then f;'(c) N Sg, is the link at infinity of
fi'(c). We choose 1, 0 < 1 < 1 such that f;'(D,(c)) has transversal intersection
with Sk, and Sg, and such that f;'(9D,(c)) has transversal intersection with all
Sk, R € [Ry, Ry]. Notice that 1 is much smaller than the ¢ of the former paragraphs
and that f; '(s) N Sk, is not the link at infinity of f, '(s) for s € 9D, (c). We fix
Ry smaller than R, such that f;'(D,(c)) has transversal intersection with Sg,. We
denote f;(D,(¢))NBg, \ Br, by A;, i = 1,2. The proof is now similar to the one of
lemma 8. Let A; and A, be connected components of A; and Ay with A; C A,. By
Ehresmann theorem, we have fibrations f; : Ay — D, (c), fi : A, — D,(c). From
one hand f, *(c)N Bg, has the homotopy type of a wedge of P+ A= (o) — Ac(o) Circles,
because f; *(c) N Bg, is diffeomorphic to f; *(c(0)) N Bg, with Euler characteristic
1 — pt— A=+ feo) + Ac(oy by Suzuki formula. From the other hand fr'(c)N Bg, has the
homotopy type of a wedge of j1-+\—fi.(1) — Ac(1) circles by Suzuki formula. By lemma
18 we have that fic(o) + Ae(o) = fte(1) + Ae1), With ¢ = ¢(1), so the fiber f;'(c) N Bpg,
and f;'(c) N Bg, are homotopic, it implies that the fibrations f; : A; — D,(c) and
fi : Ay — D,(c) are fiber homotopy equivalent, and even more are diffeomorphic.
It provides a diffeomorphism = : A; N Sk, = Ay N Sk, — A2 N Sk, and we can
suppose that Z(f; *(c) N Ay N Sg,) is equal to f, *(c) N A; N Sg,. By doing this
for all connected components of A;, A, for all values ¢ € By (1) U {*} and by
extending = to the whole spheres we get a diffeomorphism = : Sp, — Sk, such
that Z(f7 ()N Sg,) = f7 ' (c) NSk, for all ¢ € By (1)U {*}. Then the total link for
fo and f; are equivalent. O

Proof of theorem 4. By lemma 17 we have a trivialization Q> : C* x [0, 1]\C — C?\

C(0) x [0,1]. We can choose the Ry (before lemma 15) such that C'(t) C Bg,. And
then the proof of this lemma gives us an Q°" : Useoy B" (1) x {t} — B"(0) x [0, 1].
By gluing Q°% and Q> as in this proof we obtain ® : C> — C? such that:

(C2 i> (C2
fll lfo
C T> C.
Then fy and f; are topologically equivalent. O

6. CONTINUITY OF THE CRITICAL VALUES AT INFINITY

Lemma 20. Let (f;)icoq] be a family of polynomials such that the coefficients are
polynomials in t. We suppose that:

e the total affine Milnor number u(t) is constant;
e the degree deg f; is a constant;
e the set of critical points at infinity X(t) is finite and does not vary: X(t) = %;
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e for all (x:0) € X, the generic Milnor number vz(t) is independent of t.

Then the critical values at infinity depend continuously on t, i.e. if c(ty) € Buo(to)
then for all t near ty there exists c(t) near c(to) such that c(t) € B (t).

Let f be a polynomial. For z € C" we have (z : 1) in P* and if z,, # 0 we divide z
by z, to obtain local coordinates at infinity (i’,zy). The following lemma explains
the link between the critical points of f and those of F.. It uses Euler relation for
the homogeneous polynomial of f of degree d.

Lemma 21.
e [, has a critical point (i, xy) with xo # 0 of critical value 0 if and only if f
has a critical point x with critical value c.
e [, has a critical point (',0) of critical value 0 if and only if (x : 0) € X.

Proof of lemma 20. We suppose that critical values at infinity are not continuous
functions of ¢. Then there exists (¢, ¢p) such that ¢y € B (to) and for all (¢,¢) in a
neighborhood of (ty, co), we have ¢ ¢ B (t). Let P be the point of irregularity at
infinity for (to, cp). Then pp(Fy, o) > pp(Fiye) (¢ # ¢o) by definition of ¢y € Buo(to)
and by semi-continuity of the local Milnor number at P we have vp(ty) = pp(Fi, ) =
pp(Fre) = vp(t), (t,¢) # (t, o).

We consider ¢ as a complex parameter. By continuity of the critical points and by
conservation of the Milnor number for (¢, ¢) # (tg, ¢g) we have critical points M(t, c)
near P of F,, that are not equal to P. This fact uses that deg f; is a constant, in
order to prove that F; . depends continuously of .

Let denote by V’ the algebraic variety of C* x C" defined by (¢, ¢, s, z) € V' if and
only if F} . has a critical point x with critical value s (the equations are grad F} .(x) =
0, Fyo(x) = s). If up(F.) > 0 for a generic (¢, c) then {(t,¢,0,P) | (t,c) € C*} is a
subvariety of V'. We define V' to be the closure of V' minus this subvariety. Then for
a generic (t,c), (t,¢,0,P) ¢ V. We call 7 : C* x C* — C? the projection on the first
factor. We set W = m(V'). Then W is locally an algebraic variety around (¢, ¢, 0).
For each (¢,c) there is a non-zero finite number of values s such that (¢,¢,s) € W.
So W is locally an equi-dimensional variety of codimension 1. Then it is a germ
of hypersurface of C>. Let P(t,c,s) be the polynomial that defines W locally. We
set Q(t,c) = P(t,c¢,0). As Q(tg,co) = 0 then in all neighborhoods of (¢, cy) there
exists (¢, c¢) # (to, o) such that Q(¢,¢) = 0. Moreover there are solutions for ¢ a real
number near t,.

Then for (t,¢) # (o, co) we have that: Q(¢,¢) = 0 if and only if F} . has a critical
point M (t,c) # P with critical value 0. The point M (¢, ¢) is not equal to P because
as t # to, (t,¢,0,P) ¢ V: it uses that ¢ ¢ B, (t) for t # to, and that vp(t) = vp(to).
Let us notice that M(t,c) — P as (t,c) — (to, ¢o)-

We end the proof be studying the different cases:

e if we have M(t,¢) in Ho (of equation (zo = 0)) then M(t,¢) € ¥ which
provides a contradiction because then it is equal to P;
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e if we have points M (t, ¢), not in H,, with ¢ # to then there are affine critical
points M'(t,¢) of f; (lemma 21), and as M (t,c) tends towards P (as (t,c)
tends towards (¢y, ¢y)) we have that M’ (¢, c) escapes at infinity, it contradicts
the fact that critical points of f; are bounded (lemma 9).

e if we have points M (ty, ), not in H.., then there is infinitely many affine
critical points for f;,, which is impossible since the singularities of f;, are
isolated.

OJ

7. EXAMPLES

Ezample 1. Let f; = z(2*y + tx + 1). Then By (t) = &, Bo(t) = {0}, A(¢t) =1 and
deg f; = 4. The by theorem 4, f, and f; are topologically equivalent. These are

examples of polynomials that are topologically but not algebraically equivalent, see
[Bo].

Ezxample 2. Let f; = (x+t)(xy+1). Then fy and f; are not topologically equivalent.
One has By (t) = @, By (t) = {0,t} for t # 0, but By (0) = {0}, B,y (0) = @. In
fact the two affine critical points for f; “escape at infinity” as ¢ tends towards 0.

Ezample 3. Let f; = x(2(y + t2?) +1). Then fo is topologically equivalent to f;.
We have for all ¢ € [0, 1], B,y (t) = &, B (t) = {0}, and A(t) = 1, but deg f; = 4 for
t # 0 while deg fo = 3.
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