
INVARIANCE OF MILNOR NUMBERSAND TOPOLOGY OF COMPLEX POLYNOMIALSARNAUD BODINAbstra
t. We give a global version of Lê-Ramanujam �-
onstant theorem forpolynomials. Let (ft), t 2 [0; 1℄, be a family of polynomials of n 
omplex variableswith isolated singularities, whose 
oeÆ
ients are polynomials in t. We 
onsiderthe 
ase where some numeri
al invariants are 
onstant (the aÆne Milnor number�(t), the Milnor number at in�nity �(t), the number of 
riti
al values, the numberof aÆne 
riti
al values, the number of 
riti
al values at in�nity). Let n = 2,we also suppose the degree of the ft is a 
onstant, then the polynomials f0 andf1 are topologi
ally equivalent. For n > 3 we suppose that 
riti
al values atin�nity depend 
ontinuously on t, then we prove that the geometri
 monodromyrepresentations of the ft, are all equivalent.1. Introdu
tionLet f : C n �! C be a polynomial map, n > 2. By a result of Thom [Th℄ there isa minimal set of 
riti
al values B of point of C su
h that f : f�1(C n B) �! C n Bis a �bration.1.1. AÆne singularities. We suppose that aÆne singularities are isolated i.e.that the set fx 2 C n j gradf x = 0g is a �nite set. Let �
 be the sum of the lo
alMilnor numbers at the points of f�1(
). LetBa� = �
 j �
 > 0	 and � =X
2C �
be the aÆne 
riti
al values and the aÆne Milnor number.1.2. Singularities at in�nity. See [Br℄. Let d be the degree of f : C n �! C , letf = f d + f d�1 + � � � + f 0 where f j is homogeneous of degree j. Let �f(x; x0) (withx = (x1; : : : ; xn)) be the homogenization of f with the new variable x0: �f(x; x0) =f d(x) + f d�1(x)x0 + : : :+ f 0(x)xd0. LetX = �((x : x0); 
) 2 Pn � C j �f(x; x0)� 
xd0 = 0	 :Date: January 14, 2002. 1



Invarian
e of Milnor numbers 2Let H1 be the hyperplane at in�nity of Pn de�ned by (x0 = 0). The singular lo
usof X has the form �� C where� = �(x : 0) j �f d�x1 = � � � = �f d�xn = f d�1 = 0� � H1:We suppose that f has isolated singularities at in�nity that is to say that � is �nite.This is always true for n = 2. For a point (x : 0) 2 H1, assume, for example, thatx = (x1; : : : ; xn�1; 1) and set �x = (x1; : : : ; xn�1) andF
(�x; x0) = �f(x1; : : : ; xn�1; 1)� 
xd0:Let ��x(F
) be the lo
al Milnor number of F
 at the point (�x; 0). If (x : 0) 2 � then��x(F
) > 0. For a generi
 s, ��x(Fs) = ��x, and for �nitely many 
, ��x(F
) > ��x. Weset �
;�x = ��x(F
)� ��x, �
 =P(x:0)2� �
;�x. LetB1 = �
 2 C j �
 > 0	 and � =X
2C �
be the 
riti
al values at in�nity and the Milnor number at in�nity. We 
an nowdes
ribe the set of 
riti
al values B as follows (see [HL℄ and [Pa℄):B = Ba� [ B1:Moreover by [HL℄ and [ST℄ for s =2 B, f�1(s) has the homotopy type of a wedge of�+ � spheres of real dimension n� 1.1.3. Statement of the results.Theorem 1. Let (ft)t2[0;1℄ be a family of 
omplex polynomials from C n to C whose
oeÆ
ients are polynomials in t. We suppose that aÆne singularities and singulari-ties at in�nity are isolated. Let suppose that the integers �(t), �(t), #B(t), #Ba� (t),#B1(t) do not depend on t 2 [0; 1℄. Moreover let us suppose that 
riti
al values atin�nity B1(t) depend 
ontinuously on t. Then the �brations f0 : f�10 (C n B(0)) �!C n B(0) and f1 : f�11 (C n B(1)) �! C n B(1) are �ber homotopy equivalent, and forn 6= 3 are di�erentiably isomorphi
.Remark 1. As a 
onsequen
e for n 6= 3 and � =2 B(0) [ B(1) the monodromy repre-sentations �1(C n B(0); �) �! Di�(f�10 (�)) and�1(C n B(1); �) �! Di�(f�11 (�))are equivalent (where Di�(f�1t (�)) denotes the di�eomorphisms of f�1t (�) modulodi�eomorphisms isotopi
 to identity).Remark 2. The restri
tion n 6= 3, as in [LR℄, is due to the use of the h-
obordismtheorem.



Invarian
e of Milnor numbers 3Remark 3. This result extends a theorem of H�a H.V and Pham T.S. [HP℄ whi
h dealsonly with monodromy at in�nity (whi
h 
orrespond to a loop around the whole setB(t)) for n = 2. For n > 3 the invarian
e of monodromy at in�nity is stated byM. Tib�ar in [Ti℄. The proof is based on the arti
les of H�a H.V.-Pham T.S. [HP℄ andof Lê D.T.-C.P. Ramanujam [LR℄.Lemma 2. Under the hypotheses of the previous theorem (ex
ept the hypothesis of
ontinuity of the 
riti
al values), and one of the following 
onditions:� n = 2, and deg ft does not depend on t;� deg ft, and �(t) do not depend on t, and for all (x : 0) 2 �(t), ��x(t) isindependent of t;we have that B1(t) depends 
ontinuously on t, i.e. if 
(�) 2 B1(�) then for all tnear � there exists 
(t) near 
(�) su
h that 
(t) 2 B1(t).Under the hypothesis that there is no singularity at in�nity we 
an prove thestronger result:Theorem 3. Let (ft)t2[0;1℄ be a family of 
omplex polynomials whose 
oeÆ
ients arepolynomials in t. Suppose that �(t), #Ba� (t) do not depend on t 2 [0; 1℄. Moreoversuppose that n 6= 3 and for all t 2 [0; 1℄ we have B1(t) = ?. Then the polynomialsf0 and f1 are topologi
ally equivalent that is to say there exists homeomorphisms �and 	 su
h that C n �
//f0

��

C nf1
��C 	 // C :For the proof we glue the former study with the version of the �-
onstant theoremof Lê D.T. and C.P. Ramanujam stated by J.G. Timourian [Tm℄: a �-
onstantdeformation of germs of isolated hypersurfa
e singularity is a produ
t family.For polynomials in two variables we 
an prove the following theorem whi
h is aglobal version of Lê-Ramanujam-Timourian theorem:Theorem 4. Let n = 2. Let (ft)t2[0;1℄ be a family of 
omplex polynomials whose 
oef-�
ients are polynomials in t. Suppose that the integers �(t), �(t), #B(t), #Ba� (t),#B1(t), deg ft do not depend on t 2 [0; 1℄. Then the polynomials f0 and f1 aretopologi
ally equivalent.It uses a result of L. Fourrier [Fo℄ that give a ne
essary and suÆ
ient 
onditionfor polynomials to be topologi
ally equivalent outside suÆ
iently large 
ompa
t setsof C 2 .This work was initiated by an advi
e of Lê D.T. 
on
erning the arti
le [Bo℄:\It iseasier to �nd 
onditions for polynomials to be equivalent than �nd all polynomialsthat respe
t a given 
ondition."



Invarian
e of Milnor numbers 4We will denote BR = �x 2 C n j kxk 6 R	, SR = �BR = �x 2 C n j kxk = R	and Dr(
) = �s 2 C j ks� 
k 6 r	.2. FibrationsIn this paragraph we give some properties for a 
omplex polynomial f : C n �! C .The two �rst lemmas are 
onsequen
es of transversality properties. There are dire
tgeneralizations of lemmas of [HP℄. Let f be a polynomial of n 
omplex variableswith isolated aÆne singularities and with isolated singularities at in�nity. For ea
h�ber f�1(
) there is a �nite number of real numbers R > 0 su
h that f�1(
) hasnon-transversal interse
tion with the sphere SR. So for a suÆ
iently large numberR(
) the interse
tion f�1(
) with SR is transversal for all R > R(
). Let R1 bethe maximum of the R(
) with 
 2 B. We 
hoose a small ", 0 < " � 1 su
h thatfor all values 
 in the bifur
ation set B of f and for all s 2 D"(
) the interse
tionf�1(s) \ SR1 is transversal, this is possible by 
ontinuity of the transversality. Let
hoose r > 0 su
h that B is 
ontained in the interior of Dr(0). We denoteK = Dr(0) n[
2B �D"(
):Lemma 5. There exists R0 � 1 su
h that for all R > R0 and for all s in K, f�1(s)interse
ts SR transversally.Proof. We have to adapt the beginning of the proof of [HP℄. If the assertion is falsethen we have a sequen
e (xk) of points of C n su
h that f(xk) 2 K and kxkk ! +1as k ! +1 and su
h that there exists 
omplex numbers �k with gradf xk = �kxk,where the gradient is Milnor gradient: gradf = � �f�x1 ; : : : ; �f�xn�. Sin
eK is a 
ompa
tset we 
an suppose (after extra
ting a sub-sequen
e, if ne
essary) that f(xk)! 
 2K as k ! +1. Then by the Curve Sele
tion Lemma of [NZ℄ there exists a realanalyti
 
urve x :℄0; "[�! C n su
h that x(�) = a�� + a1��+1 + � � � with � < 0,a 2 R2n nf0g and gradf x(�) = �(�)x(�). Then f(x(�)) = 
+ 
1� �+ � � � with � > 0.Then we 
an redo the 
al
ulus of [HP℄:df(x(�))d� = 
dxd� ; gradf x(�)� = ��(�)
dxd� ; x(�)�it implies j�(�)j 6 2 ��df(x(�))d� ��dkx(�)k2d� :As kx(�)k = b1�� + � � � with b1 2 R�+ and � < 0 we have j�(�)j 6 
 ���1�2��1 = 
� ��2�where 
 is a 
onstant. We end the proof be using the 
hara
terization of 
riti
alvalue at in�nity in [Pa℄:kx(�)k1�1=Nk gradf x(�)k = kx(�)k1�1=N j�(�)j kx(�)k 6 
� ���=N



Invarian
e of Milnor numbers 5As � > 0 and � < 0, for all N > 0 we have that kx(�)k1�1=Nk gradf x(�)k ! 0 as� ! 0. By [Pa℄ it implies that the value 
 (the limit of f(x(�)) as � ! 0) is in B1.But as 
 2 K it is impossible. �This �rst lemma enables us to get the following result: be
ause of the transversal-ity we 
an �nd a ve
tor �eld tangent to the �bers of f and pointing out the spheresSR. Integration of su
h a ve
tor �eld gives the next lemma.Lemma 6. The �brations f : f�1(K) \ �BR0 �! K and f : f�1(K) �! K aredi�erentiably isomorphi
.We will also need the following fa
t:Lemma 7. The �brations f : f�1(K) �! K and f : f�1(C n B) �! C n B aredi�erentiably isomorphi
.The following lemma is adapted from [LR℄. For 
ompleteness we give the proof.Lemma 8. Let R;R0 with R > R0 be real numbers su
h that the interse
tionsf�1(K) \ SR and f�1(K) \ SR0 are transversal. Let us suppose that f : f�1(K) \BR0 �! K and f : f�1(K) \ BR �! K are �brations with �bers homotopi
 toa wedge of � (n � 1)-dimensional spheres. Then the �brations are �ber homotopyequivalent. And for n 6= 3 the �brations are di�erentiably equivalent.Proof. The �rst part is a 
onsequen
e of a result of A. Dold [Do, th. 6.3℄. The �rst�bration is 
ontained in the se
ond. By the result of Dold we only have to provethat if � 2 �Dr then the in
lusion of F 0 = f�1(�) \ BR0 in F = f�1(�) \ BR isan homotopy equivalen
e. To see this we 
hoose a generi
 x0 in C n su
h that thereal fun
tion x 7! kx � x0k has non-degenerate 
riti
al points of index less than n(see [M1, x7℄). Then F is obtained from F 0 by atta
hing 
ells of index less than n.For n = 2 the �bers are homotopi
 to a wedge of � 
ir
les, then the in
lusion of F 0in F is an homotopy equivalen
e. For n > 2 the �bers F; F 0 are simply 
onne
tedand the morphism Hi(F 0) �! Hi(F ) indu
ed by in
lusion is an isomorphism. Fori 6= n � 1 this is obvious sin
e F and F 0 have the homotopy type of a wedge of(n� 1)-dimensional spheres, and for i = n� 1 the exa
t sequen
e of the pair (F; F 0)is Hn(F; F 0) �! Hn�1(F ) �! Hn�1(F 0) �! Hn�1(F; F 0)with Hn(F; F 0) = 0, Hn�1(F ) and Hn�1(F 0) free of rank �, and Hn�1(F; F 0) torsion-free. Then the in
lusion of F 0 in F is an homotopy equivalen
e.The se
ond part is based on the h-
obordism theorem. LetX = f�1(K)\BRn�BR0 ,then as f has no aÆne 
riti
al points in X (be
ause there is no 
riti
al values inK) and f is transversal to f�1(K) \ SR and to f�1(K) \ SR0 then by Ehresmanntheorem f : X �! K is a �bration. We denote F n�F 0 by F �. We get an isomorphismHi(�F 0) �! Hi(F �) for all i be
ause Hi(F �; �F 0) = Hi(F; F 0) = 0. For n = 2 itimplies that F � is di�eomorphi
 to a produ
t [0; 1℄� �F 0. For n > 3 we will use the



Invarian
e of Milnor numbers 6h-
obordism theorem to F � to prove this. We have �F � = �F 0[�F ; �F 0 and �F aresimply 
onne
ted: if we look at the fun
tion x 7! �kx� x0k on f�1(�) for a generi
x0, then F = f�1(�)\BR and F 0 = f�1(�)\BR0 are obtained by gluing 
ells of indexmore or equal to n� 1. So their boundary is simply 
onne
ted. For a similar reasonF � is simply 
onne
ted. As we have isomorphisms Hi(�F 0) �! Hi(F �) and bothspa
es are simply 
onne
ted then by Hurewi
z-Whitehead theorem the in
lusion of�F 0 in F � is an homotopy equivalen
e. Now F �, �F 0, �F are simply 
onne
ted,the in
lusion of �F 0 in F � is an homotopy equivalen
e and F � has real dimension2n�2 > 6. So by the h-
obordism theorem [M2℄ F � is di�eomorphi
 to the produ
t[0; 1℄ � �F 0. Then the �bration f : X �! K is di�erentiably equivalent to the�bration f : [0; 1℄� (f�1(K)\SR0) �! K so the �brations f : f�1(K)\BR0 �! Kand f : f�1(K) \ BR �! K are di�erentiably equivalent. �3. Family of polynomialsLet (ft)t2[0;1℄ be a family of polynomials that verify hypotheses of theorem 1.Lemma 9 ([HP℄). There exists R � 1 su
h that for all t 2 [0; 1℄ the aÆne 
riti
alpoints of ft are in �BR.Proof. It is enough to prove it on [0; � ℄ with � > 0. We 
hoose R � 1 su
h that allthe aÆne 
riti
al points of f0 are in �BR. We denote�t = gradftk gradft k : SR �! S1:Then deg �0 = �(0). For all x 2 SR, gradf0 x 6= 0, and by 
ontinuity there exist� > 0 su
h that for t 2 [0; � ℄ and all x 2 SR, gradft x 6= 0. Then the maps �tare homotopi
 (the homotopy is � : SR � [0; � ℄ �! S1 with �(x; t) = �t(x)). Andthen �(0) = deg �0 = deg �t 6 �(t). If there exists a family x(t) 2 C n of aÆne
riti
al points of �t su
h that kx(t)k ! +1 as t ! 0, then for a suÆ
iently smallt, x(t) =2 BR and then �(t) > deg �t. It 
ontradi
ts the hypothesis �(0) = �(t). �Lemma 10. There exists r � 1 su
h that the subset �(
; t) 2 Dr(0) � [0; 1℄ j 
 2B(t)	 is a braid of Dr(0)� [0; 1℄.It enables us to 
hoose � 2 �Dr(0) whi
h is a regular value for all ft, t 2 [0; 1℄.In other words if we enumerate B(0) as f
1(0); : : : ; 
m(0)g then there is 
ontinuousfun
tions 
i : [0; 1℄ �! Dr(0) su
h that for i 6= j, 
i(t) 6= 
j(t). This enables us toidentify �1(C n B(0); �) and �1(C n B(1); �).Proof. Let � be in [0; 1℄ and 
(�) be a 
riti
al value of f� then for all t near � thereexists a 
riti
al value 
(t) of ft. It is an hypothesis for the 
riti
al values at in�nityand this fa
t is well-known for aÆne 
riti
al values as the 
oeÆ
ients of ft are smoothfun
tions of t, see for example [Br, Prop. 2.1℄.



Invarian
e of Milnor numbers 7Moreover by the former lemma there 
an not exist 
riti
al values that es
ape atin�nity i.e. a � 2 [0; 1℄ su
h that j
(t)j ! +1 as t ! � . For aÆne 
riti
al valuesit is a 
onsequen
e of the former lemma (or we 
an make the same proof as we nowwill perform for the 
riti
al values at in�nity). For B1(t) let us suppose that there is
riti
al values that es
ape at in�nity. By 
ontinuity of the 
riti
al values at in�nitywith respe
t to t we 
an suppose that there is a 
ontinuous fun
tion 
0(t) on ℄0; � ℄(� > 0) with 
0(t) 2 B1(t) and j
(t)j ! +1 as t! 0. By 
ontinuity of the 
riti
alvalues at in�nity, if B1(0) = f
1(0); : : : ; 
p(0)g there exist 
ontinuous fun
tions 
i(t)on [0; � ℄ su
h that 
i(t) 2 B1(t) for all i = 1; : : : ; p. And for a suÆ
iently smallt > 0, 
0(t) 6= 
i(t) (i = 1; : : : ; p) then #B1(0) < #B1(t) whi
h 
ontradi
ts the
onstan
y of #B1(t).Finally there 
an not exist rami�
ation points: suppose that there is a � su
hthat 
i(�) = 
j(�) (and 
i(t); 
j(t) are not equal in a neighborhood of �). Then if
i(�) 2 Ba� (�) n B1(�) (resp. B1(�) n Ba� (�), B1(�) \ Ba� (�)) there is jump in#Ba� (t) (resp. #B1(t), #B(t)) near � whi
h is impossible by assumption. �Let R0; K;Dr(0); D"(
) be the obje
ts of the former se
tion for the polynomialf = f0. Moreover we suppose that R0 is greater than the R obtained in lemma 9.Lemma 11. There exists � 2℄0; 1℄ su
h that for all t 2 [0; � ℄ we have the properties:� 
i(t) 2 D"(
i(0)), i = 1; : : : ; m;� for all s 2 K, f�1t (s) interse
ts SR0 transversally.Proof. The �rst point is just the 
ontinuity of the 
riti
al values 
i(t). The se
ondpoint is the 
ontinuity of transversality: if the property is false then there existssequen
es tk ! 0, xk 2 SR0 and �k 2 C su
h that gradftk xk = �kxk. We 
an supposethat (xk) 
onverges (after extra
tion of a sub-sequen
e, if ne
essary). Then xk ! x 2SR0 , gradftk xk ! gradf0 x, and �k = hgradftk xk j xki=kxkk2 = hgradftk xk j xki=R02
onverges toward � 2 C . Then gradf0 x = �x and the interse
tion is non-transversal.�Lemma 12. The �brations f0 : f�10 (K)\BR0 �! K and f� : f�1� (K)\BR0 �! Kare di�erentiably isomorphi
.Proof. Let F : C n � [0; 1℄ �! C � [0; 1℄; (x; t) 7! (ft(x); t):We want to prove that the �brations F0 : �0 = F�1(K �f0g)\ (BR0 �f0g) �! K,(x; 0) 7! f0(x) and F� : �� = F�1(K � f�g) \ (BR� � f�g) �! K, (x; �) 7! f� (x)are di�erentiably isomorphi
. Let denote [0; � ℄ by I. Then F has maximal rank onF�1(K�I)\(�BR0�I) and on the boundary F�1(K�I)\(SR0�I). By Ehresmanntheorem F : F�1(K� I)\ (BR0 � I) �! K� I is a �bration. But we 
an not argueas in [LR℄ sin
e the restri
tion of F on the set �(x; t) 2 SR0 � I j ft(x) 2 Dr(0)	 isnot a trivial �bration.



Invarian
e of Milnor numbers 8As in [HP℄ we build a ve
tor �eld that give us a di�eomorphism between the two�brations F0 and F� . Let R2 be a real number 
lose to R0 su
h that R2 < R0.On the set F�1(K � I) \ ([R2<R<R0SR � I) we build a ve
tor �eld v1 su
h that forz 2 SR�I (R2 < R < R0), v1(z) is tangent to SR�I and we have dzF:v1(z) = (0; 1).On the set F�1(K � I) \ (�BR3 � I) with R2 < R3 < R0 we build a se
ond ve
tor�eld v2 su
h that dzF:v2(z) = (0; 1), this is possible be
ause F is a submersion onthis set.By gluing these ve
tor �elds v1 and v2 by a partition of unity and by integrating the
orresponding ve
tor �eld we obtain integral 
urves pz : R �! F�1(K�I)\BR0�Ifor z 2 �0 su
h that pz(0) = z and pz(�) 2 �� . It indu
es a di�eomorphism� : �0 �! �� su
h that F0 = F� Æ �; that makes the �brations isomorphi
. �Proof of theorem 1. It suÆ
es to prove the theorem for an interval [0; � ℄ with � > 0.We 
hoose � as in lemma 11. By lemma 7, f0 : f�1(C n B(0)) �! C n B(0) andf0 : f�10 (K) �! K are di�erentiably isomorphi
 �brations. Then by lemma 6, the�bration f0 : f�10 (K) �! K is di�erentiably isomorphi
 to f0 : f�10 (K)\ �BR0 �! Kwhi
h is, by lemma 12 di�erentiably isomorphi
 to f� : f�1� (K) \ �BR0 �! K.By 
ontinuity of transversality (lemma 11) f�1� (K) has transversal interse
tionwith SR0 , we 
hoose a large real number R (by lemma 5 applied to f� ) su
h thatf�1� (K) interse
ts SR transversally. The last �bration is �ber homotopy equivalent tof� : f�1� (K)\�BR �! K: it is the �rst part of lemma 8 be
ause the �ber f�1� (�)\�BR0is homotopi
 to a wedge of �(0)+�(0) 
ir
les and the �ber f�1� (�)\�BR is homotopi
to a wedge of �(�) + �(�) 
ir
les; as �(0) + �(0) = �(�) + �(�) we get the desired
on
lusion. Moreover for n 6= 3 by the se
ond part of lemma 8 the �brations aredi�erentiably isomorphi
.Applying lemma 6 and 7 to f� this �bration is di�erentiably isomorphi
 to f� :f�1� (C n B(�)) �! C n B(�). As a 
on
lusion the �brations f0 : f�10 (C n B(0)) �!C nB(0) and f� : f�1� (C nB(� )) �! C nB(� ) are �ber homotopy equivalent, and forn 6= 3 are di�erentiably isomorphi
 �4. Around affine singularitiesWe now work with t 2 [0; 1℄. We suppose in this paragraph that the 
riti
al valuesB(t) depend analyti
ally on t 2 [0; 1℄. This enables us to 
onstru
t a di�eomorphism:� : C � [0; 1℄ �! C � [0; 1℄; with �(x; t) = (�t(x); t);su
h that �0 = id and �t(B(t)) = B(0). We denote �1 by 	, so that 	 : C �! Cverify 	(B(1)) = B(0). Moreover we 
an suppose that �t is equal to id on C nDr(0)this is possible be
ause for all t 2 [0; 1℄, B(t) � Dr(0). Finally � de�nes a ve
tor�eld w of C � [0; 1℄ by ���t .



Invarian
e of Milnor numbers 9We need a non-splitting of the aÆne singularity, this prin
iple has been provedby C. Has Bey ([HB℄, n = 2) and by F. Lazzeri ([La℄, for all n).Lemma 13. Let x(�) be an aÆne singular point of f� and let U� be an open neigh-borhood of x(�) in C n su
h that x(�) is the only aÆne singular point of f� in U� .Suppose that for all t 
losed to � , the restri
tion of ft to U� has only one 
riti
alvalue. Then for all t suÆ
iently 
losed to � , there is one, and only one, aÆnesingular point of ft 
ontained in U� .So we 
an enumerate the singularities: if we denote the aÆne singularities of f0 byfxi(0)gi2J then there is 
ontinuous fun
tions xi : [0; 1℄ �! C n su
h that fxi(t)gi2Jis the set of aÆne singularities of ft. Let us noti
e that there 
an be two distin
tsingular points of ft with the same 
riti
al value. We suppose that (ft) veri�es thehypotheses of theorem 1, that n 6= 3, and B(t) depends analyti
ally on t. Thisand the former lemma imply that for all t 2 [0; 1℄ the lo
al Milnor number of ft atx(t) is equal to the lo
al Milnor number of f0 at x(0). The improved version of Lê-Ramanujam theorem by J.G. Timourian [Tm℄ for a family of germs with 
onstantlo
al Milnor numbers proves that (ft) is lo
ally a produ
t family.Theorem 14 (Lê-Ramanujam-Timourian). Let x(t) be a singular points of ft.There exists Ut, Vt neighborhoods of x(t), ft(x(t)) respe
tively and an homeomor-phism 
in su
h that if U = St2[0;1℄ Ut � ftg and V = St2[0;1℄ Vt � ftg the followingdiagram 
ommutes: U 
in
//F

��

U0 � [0; 1℄f0�id
��V � // V0 � [0; 1℄:In parti
ular it proves that the polynomials f0 and f1 are lo
ally topologi
allyequivalent: we get an homeomorphism �in su
h that the following diagram 
om-mutes: U1 �in

//f1
��

U0f0
��V1 	 // V0:By lemma 9 we know that for all t 2 [0; 1℄, B(t) � Dr(0). We extend the de�nitionof R0 and R1 to all ft. Be 
ontinuity of transversality and 
ompa
tness of [0; 1℄ we
hoose R1 su
h that8
 2 B(0) 8R > R1 f�10 (
) t SR and 8t 2 [0; 1℄ 8
 2 B(t) f�1t (
) t SR1 :
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e of Milnor numbers 10For a suÆ
iently small " we denoteK(0) = Dr(0) n [
2B1(0)D"(
); K(t) = ��1t (K(0))and we 
hoose R0 > R1 su
h that8s 2 K(t) 8R > R0 f�10 (s) t SR and 8t 2 [0; 1℄ 8s 2 K(t) f�1t (s) t SR0 :We denote B0t = BR1 [ �f�1t (K(t)) \ �BR0�; t 2 [0; 1℄:Lemma 15. There exists an homeomorphism � su
h that we have the 
ommutativediagram: B01 �
//f1

��

B00f0
��Dr(0) 	 // Dr(0):Proof. We denote by U 0t a neighborhood of x(t) su
h that �U 0t � Ut. We denote byUt (resp. U 0t), the union (on the aÆne singular points of ft ) of the Ut (resp. U 0t).We set B00t = B0t n U 0t; t 2 [0; 1℄:We 
an extend the homeomorphism � of lemma 12 to �out : B001 �! B000 . We justhave to extend the ve
tor �eld of lemma 12 to a new ve
tor �eld denoted by v0 su
hthat � v0 is tangent to �U 0t ,� v0 is tangent to SR1 � [0; 1℄ on F�1(Dr(0) nK(t)� ftg) for all t 2 [0; 1℄,� v0 is tangent to SR0 � [0; 1℄ on F�1(K(t)� ftg) for all t.� dzF:v0(z) = w(F (z)) for all z 2 St2[0;1℄B00t � ftg, whi
h means that �outrespe
t the �brations.If we set B00 = St2[0;1℄B00t � ftg the integration of v0 gives 
out and �out su
h that:B00 
out

//F
��

B000 � [0; 1℄f0�id
��C � [0; 1℄ � // C � [0; 1℄; B001 �out

//f1
��

B000f0
��Dr(0) 	 // Dr(0):We now explain how to glue �in and �out together. We 
an suppose that thereexists spheres St 
entered at the singularities x(t) su
h that if S = St2[0;1℄ St � ftg
in : S �! S0 � [0; 1℄ and 
out : S �! S0 � [0; 1℄. It de�nes 
int : St �! S0 and
outt : St �! S0. Now we de�ne�t : S1 �! S0; �t = 
int Æ (
outt )�1 Æ �out:



Invarian
e of Milnor numbers 11Then �0 = �out and �1 = �in. On a set homeomophi
 to S � [0; 1℄ in
luded inSt2[0;1℄ Ut nU 0t we glue �in to �out, moreover this gluing respe
t the �brations f0 andf1. We end by doing this 
onstru
tion for all aÆne singular points. �Proof of theorem 3. We �rstly prove that aÆne 
riti
al values are analyti
 fun
tionsof t. Let 
(0) 2 Ba� (0), the set �(
(t); t) j t 2 [0; 1℄	 is a real algebrai
 subset ofC � [0; 1℄ as all aÆne 
riti
al points are 
ontained in BR0 (lemma 9). In fa
t there isa polynomial P 2 C [x; t℄ su
h that (
 = 0) is equal to (P = 0) \ C � [0; 1℄. Be
ausethe set of 
riti
al values is a braid of C � [0; 1℄ (lemma 10) then 
 : [0; 1℄ �! C is asmooth analyti
 fun
tion.If we suppose that B1(t) = ? for all t 2 [0; 1℄ then by lemma 6 we 
an extend� : B01 �! B00 to � : f�11 (Dr(0)) �! f�10 (Dr(0)). And as B(t) � Dr(0) by a lemmasimilar to lemma 7 we 
an extend the homeomorphism to the whole spa
e. �5. Polynomials in two variablesWe set n = 2. Let ft : C 2 �! C su
h that the 
oeÆ
ient of this family arealgebrai
 in t. We suppose that the integers �(t), �(t), #B(t), #Ba� (t), #B1(t) donot depend on t 2 [0; 1℄. We also suppose the deg ft does not depend on t.We re
all a result of L. Fourrier [Fo℄. Let f : C 2 �! C with set of 
riti
al valuesat in�nity B1. Let � =2 B and Z = f�1(�) [ S
2B1 f�1(
). The total link of f isLf = Z \ SR for a suÆ
iently large R. To f we asso
iate a resolution � : � �! P1,the 
omponents of the divisor of this resolution on whi
h � is surje
tive are thedi
riti
al 
omponents. For ea
h di
riti
al 
omponent D we have a bran
hed 
overing� : D �! P1. If the set of di
riti
al 
omponents is Ddi
 we then have the restri
tionof �, �di
 : Ddi
 �! P1. The 0-monodromy representation is the representation�1(C n B) �! Aut ���1di
(�)�:Theorem 16 (Fourrier). Let f; g be 
omplex polynomials in two variables withequivalent 0-monodromy representations and equivalent total links then there existhomeomorphisms �1 and 	1 and 
ompa
t sets C;C 0 of C 2 that make the diagram
ommuting: C 2 nC �1
//f

��

C 2 n C 0g
��C 	1 // C :For our family (ft), by theorem 1 we know that the geometri
 monodromy repre-sentations are all equivalent, it implies that all the 0-monodromy representations of(ft) are equivalent. Moreover if we suppose that for any t; t0 2 [0; 1℄ the total linksLft and Lft0 are equivalent, then by the former theorem the polynomials ft and ft0are topologi
ally equivalent out of some 
ompa
t sets of C 2 . We need a result a bit
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e of Milnor numbers 12stronger whi
h 
an be proved by similar arguments than in [Fo℄ and we will omitthe proof:Lemma 17. Let (ft)t2[0;1℄ be a polynomial family su
h that the 
oeÆ
ients are al-gebrai
 fun
tions of t. We suppose that the 0-monodromy representations and thetotal links are all equivalent. Then there exists 
ompa
t sets C(t) of C 2 and anhomeomorphism 
1 su
h that if C = St2[0;1℄C(t) � ftg we have a 
ommutativediagram: C 2 � [0; 1℄ n C 
1
//F

��

C 2 n C(0)� [0; 1℄f0�id
��C � [0; 1℄ � // C � [0; 1℄:We now prove a strong version of the 
ontinuity of 
riti
al values.Lemma 18. The 
riti
al values are smooth analyti
 fun
tions of t. Moreover for
(t) 2 B(t), the integer �
(t) and �
(t) do not depend on t 2 [0; 1℄.Proof. For aÆne 
riti
al values, refer to the proof of theorem 3. The 
onstan
y of�
(t) is a 
onsequen
e of lemma 9 and lemma 13. For 
riti
al values at in�nity weneed a result of [Ha℄ and [HP℄ that enables to 
al
ulate 
riti
al values and Milnornumbers at in�nity. As deg ft is 
onstant we 
an suppose that this degree is degy ft.Let denote �(x; s; t) the dis
riminant Dis
y(ft(x; y)�s) with respe
t to y. We write�(x; s; t) = q1(s; t)xk(t) + q2(s; t)xk(t)�1 + � � �First of all � has 
onstant degree k(t) in x be
ause k(t) = �(t) + �(t) + deg ft � 1(see [HP℄). Se
ondly by [Ha℄ we haveB1(t) = �s j q1(s; t) = 0	then we see that 
riti
al values at in�nity depend 
ontinuously on t and that 
riti
alvalues at in�nity are a real algebrai
 subset of C�[0; 1℄. For the anali
ity we end as inthe proof of theorem 3. Finally, for a �xed t, we have that �
 = k(t)�degx�(x; 
; t).In other words qi(t; 
) is zero for i = 1; : : : ; �
 and non-zero for i = �
 + 1. For
(t) 2 B1(t) we now prove that �
(t) is 
onstant. The former formula proves that�
(t) is 
onstant ex
ept for all but �nitely many � 2 [0; 1℄ for whi
h �
(�) > �
(t).But if �
(�) > �
(t) then �(�) =P
2B1(�) �
 >P
2B1(t) �
 = �(t) whi
h 
ontradi
tsthe hypotheses. �To apply lemma 17 we need to prove:Lemma 19. For any t; t0 2 [0; 1℄ the total links Lft and Lf 0t are equivalent.Proof. The problem is similar to the one of [LR℄ and to lemma 8. For a value 
(t) inB1(t) or equal to �, we have that the link at in�nity f�10 (
(0))\SR1 is equivalent tothe link f�11 (
(1))\ SR1 (lemma 15). But f�11 (
(1))\ SR1 is not ne
essarily the link
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e of Milnor numbers 13at in�nity for f�11 (
(1)). We now prove this fa
t; let denote 
 = 
(1). Let R2 > R1su
h that for all R > R2, f�11 (
) t SR, then f�11 (
) \ SR2 is the link at in�nity off�11 (
). We 
hoose �, 0 < � � 1 su
h that f�11 (D�(
)) has transversal interse
tionwith SR1 and SR2 and su
h that f�11 (�D�(
)) has transversal interse
tion with allSR, R 2 [R1; R2℄. Noti
e that � is mu
h smaller than the " of the former paragraphsand that f�11 (s) \ SR2 is not the link at in�nity of f�11 (s) for s 2 �D�(
). We �xR0 smaller than R1 su
h that f�11 (D�(
)) has transversal interse
tion with SR0 . Wedenote f�11 (D�(
))\BRi n �BR0 by Ai, i = 1; 2. The proof is now similar to the one oflemma 8. Let A1 and A2 be 
onne
ted 
omponents of A1 and A2 with A1 � A2. ByEhresmann theorem, we have �brations f1 : A1 �! D�(
), f1 : A2 �! D�(
). Fromone hand f�11 (
)\BR1 has the homotopy type of a wedge of �+���
(0)��
(0) 
ir
les,be
ause f�11 (
) \ BR1 is di�eomorphi
 to f�11 (
(0)) \ BR1 with Euler 
hara
teristi
1����+�
(0)+�
(0) by Suzuki formula. From the other hand f�11 (
)\BR2 has thehomotopy type of a wedge of �+���
(1)��
(1) 
ir
les by Suzuki formula. By lemma18 we have that �
(0) + �
(0) = �
(1) + �
(1), with 
 = 
(1), so the �ber f�11 (
) \BR1and f�11 (
)\BR2 are homotopi
, it implies that the �brations f1 : A1 �! D�(
) andf1 : A2 �! D�(
) are �ber homotopy equivalent, and even more are di�eomorphi
.It provides a di�eomorphism � : A1 \ SR1 = A2 \ SR1 �! A2 \ SR2 and we 
ansuppose that �(f�11 (
) \ A1 \ SR1) is equal to f�11 (
) \ A1 \ SR1 . By doing thisfor all 
onne
ted 
omponents of A1, A2, for all values 
 2 B1(1) [ f�g and byextending � to the whole spheres we get a di�eomorphism � : SR1 �! SR2 su
hthat �(f�11 (
)\ SR1) = f�11 (
)\SR2 for all 
 2 B1(1)[ f�g. Then the total link forf0 and f1 are equivalent. �Proof of theorem 4. By lemma 17 we have a trivialization 
1 : C 2�[0; 1℄nC �! C 2nC(0)� [0; 1℄. We 
an 
hoose the R1 (before lemma 15) su
h that �C(t) � BR1 . Andthen the proof of this lemma gives us an 
out : St2[0;1℄B00(t)�ftg �! B00(0)� [0; 1℄.By gluing 
out and 
1 as in this proof we obtain � : C 2 �! C 2 su
h that:C 2 �
//f1

��

C 2f0
��C 	 // C :Then f0 and f1 are topologi
ally equivalent. �6. Continuity of the 
riti
al values at infinityLemma 20. Let (ft)t2[0;1℄ be a family of polynomials su
h that the 
oeÆ
ients arepolynomials in t. We suppose that:� the total aÆne Milnor number �(t) is 
onstant;� the degree deg ft is a 
onstant;� the set of 
riti
al points at in�nity �(t) is �nite and does not vary: �(t) = �;



Invarian
e of Milnor numbers 14� for all (x : 0) 2 �, the generi
 Milnor number ��x(t) is independent of t.Then the 
riti
al values at in�nity depend 
ontinuously on t, i.e. if 
(t0) 2 B1(t0)then for all t near t0 there exists 
(t) near 
(t0) su
h that 
(t) 2 B1(t).Let f be a polynomial. For x 2 C n we have (x : 1) in Pn and if xn 6= 0 we divide xby xn to obtain lo
al 
oordinates at in�nity (�x0; x0). The following lemma explainsthe link between the 
riti
al points of f and those of F
. It uses Euler relation forthe homogeneous polynomial of f of degree d.Lemma 21.� F
 has a 
riti
al point (�x0; x0) with x0 6= 0 of 
riti
al value 0 if and only if fhas a 
riti
al point x with 
riti
al value 
.� F
 has a 
riti
al point (�x0; 0) of 
riti
al value 0 if and only if (x : 0) 2 �.Proof of lemma 20. We suppose that 
riti
al values at in�nity are not 
ontinuousfun
tions of t. Then there exists (t0; 
0) su
h that 
0 2 B1(t0) and for all (t; 
) in aneighborhood of (t0; 
0), we have 
 =2 B1(t). Let P be the point of irregularity atin�nity for (t0; 
0). Then �P (Ft0;
0) > �P (Ft0;
) (
 6= 
0) by de�nition of 
0 2 B1(t0)and by semi-
ontinuity of the lo
al Milnor number at P we have �P (t0) = �P (Ft0;
) >�P (Ft;
) = �P (t), (t; 
) 6= (t0; 
0).We 
onsider t as a 
omplex parameter. By 
ontinuity of the 
riti
al points and by
onservation of the Milnor number for (t; 
) 6= (t0; 
0) we have 
riti
al pointsM(t; 
)near P of Ft;
 that are not equal to P . This fa
t uses that deg ft is a 
onstant, inorder to prove that Ft;
 depends 
ontinuously of t.Let denote by V 0 the algebrai
 variety of C 3 �C n de�ned by (t; 
; s; x) 2 V 0 if andonly if Ft;
 has a 
riti
al point x with 
riti
al value s (the equations are gradFt;
(x) =0; Ft;
(x) = s). If �P (Ft;
) > 0 for a generi
 (t; 
) then �(t; 
; 0; P ) j (t; 
) 2 C 2	 is asubvariety of V 0. We de�ne V to be the 
losure of V 0 minus this subvariety. Then fora generi
 (t; 
), (t; 
; 0; P ) =2 V . We 
all � : C 3�C n �! C 3 the proje
tion on the �rstfa
tor. We set W = �(V ). Then W is lo
ally an algebrai
 variety around (t0; 
0; 0).For ea
h (t; 
) there is a non-zero �nite number of values s su
h that (t; 
; s) 2 W .So W is lo
ally an equi-dimensional variety of 
odimension 1. Then it is a germof hypersurfa
e of C 3 . Let P (t; 
; s) be the polynomial that de�nes W lo
ally. Weset Q(t; 
) = P (t; 
; 0). As Q(t0; 
0) = 0 then in all neighborhoods of (t0; 
0) thereexists (t; 
) 6= (t0; 
0) su
h that Q(t; 
) = 0. Moreover there are solutions for t a realnumber near t0.Then for (t; 
) 6= (t0; 
0) we have that: Q(t; 
) = 0 if and only if Ft;
 has a 
riti
alpointM(t; 
) 6= P with 
riti
al value 0. The pointM(t; 
) is not equal to P be
auseas t 6= t0, (t; 
; 0; P ) =2 V : it uses that 
 =2 B1(t) for t 6= t0, and that �P (t) = �P (t0).Let us noti
e that M(t; 
)! P as (t; 
)! (t0; 
0).We end the proof be studying the di�erent 
ases:� if we have M(t; 
) in H1 (of equation (x0 = 0)) then M(t; 
) 2 � whi
hprovides a 
ontradi
tion be
ause then it is equal to P ;
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e of Milnor numbers 15� if we have pointsM(t; 
), not in H1, with t 6= t0 then there are aÆne 
riti
alpoints M 0(t; 
) of ft (lemma 21), and as M(t; 
) tends towards P (as (t; 
)tends towards (t0; 
0)) we have thatM 0(t; 
) es
apes at in�nity, it 
ontradi
tsthe fa
t that 
riti
al points of ft are bounded (lemma 9).� if we have points M(t0; 
), not in H1, then there is in�nitely many aÆne
riti
al points for ft0 , whi
h is impossible sin
e the singularities of ft0 areisolated. �7. ExamplesExample 1. Let ft = x(x2y + tx+ 1). Then Ba� (t) = ?, B1(t) = f0g, �(t) = 1 anddeg ft = 4. The by theorem 4, f0 and f1 are topologi
ally equivalent. These areexamples of polynomials that are topologi
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t the two aÆne 
riti
al points for ft \es
ape at in�nity" as t tends towards 0.Example 3. Let ft = x�x(y + tx2) + 1�. Then f0 is topologi
ally equivalent to f1.We have for all t 2 [0; 1℄, Ba� (t) = ?, B1(t) = f0g, and �(t) = 1, but deg ft = 4 fort 6= 0 while deg f0 = 3. Referen
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