
CLASSIFICATION OF POLYNOMIALS FROM C 2 TO CWITH ONE CRITICAL VALUEARNAUD BODIN1. Introdu
tionLet f : C 2 �! C be a polynomial map. The bifur
ation set B isthe minimal set of points of C su
h that f : C 2 n f�1(B) �! C n Bis a lo
ally trivial �bration. We 
an des
ribe B as follows: let Ba� =�f(x; y) j gradf (x; y) = (0; 0)	 be the set of aÆne 
riti
al values. The setBa� is a subset of B but is not ne
essarily equal to B. The value 
 2 C isregular at in�nity if there exists a disk D 
entered at 
 and a 
ompa
t set Kof C 2 with a lo
ally trivial �bration f : f�1 (D) nK �! D. There is only a�nite number of non-regular values at in�nity: the 
riti
al values at in�nity
olle
ted in B1. The bifur
ation set B is now:B = Ba� [ B1:For 
 2 C , we denote the �ber f�1(
) by F
. If s =2 B, then the �ber Fs is
alled a generi
 �ber and is denoted Fgen .The aim of this paper is to des
ribe the 
lassi�
ation of redu
ed polyno-mial maps with one 
riti
al value, that is, for 
onvenien
e, B = f0g. The
lassi�
ation is given up to homeomorphisms: two polynomials f and g aretopologi
ally equivalent (f � g) if there exists homeomorphisms � and 	su
h that the following diagram 
ommutes:C 2 � //f
��

C 2g
��C 	 // C :Theorem. Let f : C 2 �! C be a redu
ed polynomial. We denote by p andq two relatively prime natural numbers, "; "0 2 f0; 1g, � = �(x; y) = xsy+1,(s > 0). Let n > 1 and let g(x) be the polynomial g(x) =Qni=1(x� i)mi with1 6 m1 6 m2 6 � � � 6 mn; and let gred be the redu
ed polynomial asso
iatedto g, gred (x) =Qni=1(x� i).� If Ba� = B1 = ? then f � x,� if Ba� = f0g and B1 = ? then{ f � y � gred (x),{ or f � xQni=1(xp � iy) (if p = 1 then n > 2),{ or f � x"y"0Qni=1(xp � iyq), (1 < p < q),1



Polynomials with one 
riti
al value 2� if Ba� = ? and B1 = f0g then{ f � xQni=1 (xpyq � i){ or f � x�Qni=1 (xp�q � i) (p > 1 or q > 1),{ or f � x�"Qni=1 (xp � i�q) (if " = 0 then q > 1),{ or f � gred (x)(g(x)y + 1) (n > 1),� if Ba� = f0g and B1 = f0g then{ f � xyQni=1(xpyq � i) (1 6 p < q),{ or f � gred (x)k(x)(g(x)y + 1) (k(x) =Qn0i=1(x+ i), n0 > 1).Moreover, two di�erent polynomials of this 
lassi�
ation are not topologi
allyequivalent.We de�ne a stronger notion of equivalen
e. Two polynomials f and g arealgebrai
ally equivalent (f � g) if there exists an algebrai
 automorphism �of C 2 and 	 an automorphism of C with equation 	(z) = az + b su
h thatthe following diagram 
ommutes:C 2 � //f
��

C 2g
��C 	 // C :The study of polynomials with one 
riti
al value is redu
ed to a few 
ases,up to algebrai
 equivalen
e. The 
ase B = ? is the famous Abhyankar-Mohtheorem ([AM℄, see paragraph 2). A theorem of M. Za��denberg and V. Lin[ZL℄ 
orresponds to the 
ase Ba� = f0g and B1 = ? for irredu
ible polyno-mials. We generalize this result to the redu
ible 
ase by using methods fromthe proof of Za��denberg-Lin theorem by W. Neumann and L. Rudolph [NR℄(paragraph 3). The remaining 
ases (B1 = f0g) are studied in paragraphs4 and 5. The arguments are essentially topologi
al: we �nd a smooth diskin the �ber f�1(0) and we argue with bran
hed 
overings in order to giveequations that represent equivalent 
lasses of polynomials up to algebrai
equivalen
e. That enables us to re
over the list obtained by M. Za��denbergby the use of C � -a
tion [Za℄.The last part of the work (paragraph 6) is to dedu
e from the formerresults the topologi
al 
lassi�
ation. Resolution of singularities determinespolynomials with one 
riti
al value up to topologi
al equivalen
e. It givesa 
lassi�
ation without redundan
y. The algebrai
 and the topologi
al 
las-si�
ation for irredu
ible polynomials with B1 = ? (and with Ba� = ? orBa� = f0g) given by Abhyankar-Moh and Za��denberg-Lin are the same.However this is not true in general: we give polynomials (with Ba� = ? andB1 = f0g) that are topologi
ally equivalent but not algebrai
ally equivalent.



Polynomials with one 
riti
al value 32. PreliminariesWhen there is no 
riti
al value, the situation has been 
ompleted byS. Abhyankar and T. Moh [AM℄. Abhyankar-Moh theorem is formulated asfollows:Theorem 1. If B = ? then f � x.Re
all that F0 = f�1(0). A polynomial is primitive if its generi
 �ber is
onne
ted. The link between Euler 
hara
teristi
 of the zero �ber and thein
lusion B � f0g (that is to say B = ? or B = f0g) is explained in thelemma:Lemma 2. If B � f0g then � (F0) = +1. Moreover, if the polynomial f isprimitive and � (F0) = +1 then B � f0g.Proof. The de
omposition C = C n f0g [f0g gives a partition C 2 = f�1(C nf0g) [ f�1(0). By additivity of the Euler 
hara
teristi
, [Fu, p. 95℄1 = ��f�1(C n f0g)� + ��f�1(0)�:If B � f0g then f de�nes a lo
ally trivial �bration onto C n f0g. Then��f�1(C n f0g)� = ��C n f0g�� ��f�1(1)�:The Euler 
hara
teristi
 of C n f0g is zero. Hen
e ��f�1(C n f0g)� = 0 and��f�1(0)� = 1.Conversely, if f is a primitive polynomial then by Suzuki formula [Su℄:1� �(Fgen) =X
2B ��(F
)� ��Fgen)�:If �(F0) = +1 then P
2Bnf0g ��(F
) � �(Fgen)� = 0, but if 
 2 B then�(F
)� �(Fgen) > 0 (see [HL℄), then B � f0g. �Remark. For a primitive polynomial Suzuki formula proves the equivalen
e��f�1(0)� = +1 , B � f0g (see [ZL℄, [GP℄ for example). However thenon primitive polynomial f(x; y) = xy(xy + 1) veri�es ��f�1(0)� = 1 butB = f0;�14g.We denote h(0) the algebrai
 monodromy indu
ed in homology1 onH1(Fgen)by a small 
ir
le S1" (0) of radius " 
entered at 0. The key of this paper isthe following simple remark: for all S1r (0) (r > 0) the indu
ed monodromiesare equal sin
e 0 is the only 
riti
al value.To 
ompa
tify the situation we need resolution of singularities at in�nity[LW1℄: C 2 //f
��

CP 2~f
��

��oo �f}}{{
{
{
{
{
{
{C // CP 11Homology with integer 
oeÆ
ients.
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riti
al value 4where ~f is the natural |but not well-de�ned| map 
oming from the ho-mogenization of f ; � is the blow-up of some points on the line at in�nityL1 of C P 2 and of the aÆne singular points.We denote D0 = �f�1(0) and D1 = �f�1(1). The dual graph G0 ofD0 is obtained as follows: one vertex for ea
h irredu
ible 
omponent of D0and one edge between two verti
es for one interse
tion of the 
orresponding
omponents. A similar 
onstru
tion is done to obtain G1, we know thatG1 is a tree [LW1℄.The monodromy indu
ed by a small 
ir
le S1" (1) 
entered at 1 in C P 1is exa
tly the monodromy h(0) with the reverse orientation:h(1) = h(0)�1:This property allows us to prove the three following lemmas.Lemma 3. The �ber F0 = f�1(0) is rational, that is to say the union ofpun
tured spheres.Proof. Let B1; : : : ; Bp be small 4-balls around the aÆne singularities of F0and set FÆ0 = F0\B4R nB1[ : : :[Bp. Then FÆ0 
an be isotoped into Fgen andwe denote `� : H1(FÆ0 ) �! H1(Fgen) the indu
ed morphism. Then, by [Bo℄or [MW℄, the invariant 
y
les for h(0) are Ker(h(0) � id) = Im `�. Supposethat one of the 
omponents of F0 has genus, then Fgen has genus and the
y
les 
orresponding to genus indu
ed be FÆ0 are invariant 
y
les.On the other hand the 
y
les invariant by all the monodromies asso
iatedto elements of �1(C nB; �) are 
y
les 
orresponding to the boundary2 of Fgen(see [Bo℄ or [DN℄). Here there is only one monodromy and invariant 
y
lesby all the monodromies are exa
tly 
y
les invariant by h(0). It provides a
ontradi
tion. �Lemma 4. There is no 
y
le in G0: H1(G0) = 0.Proof. A theorem of F. Mi
hel and C. Weber [MW℄ asserts �rstly, that the
y
les of G0 
orrespond to Jordan 2-blo
ks ( 1 10 1 ) for the monodromy h(0)and se
ondly, that h(1) does not have any su
h blo
ks sin
e G1 is a tree.Now, as h(0) = h(1)�1, G0 has no 
y
le. �Lemma 5. The tube f�1(S1r (0)) is a Seifert manifold.Proof. Let us suppose that in the minimal Waldhausen de
omposition3 off�1(S1r (0)) there exists two distin
t Seifert pie
es. This de
omposition 
anbe obtained, as des
ribed in [LMW℄, from the boundary of a neighborhoodof the divisor D0; moreover a Dehn twist between two Seifert pie
es 
anbe 
al
ulated (see [MW℄) and is non-positive. But the de
omposition off�1(S1r (0)) 
an also be obtained as the boundary of a neighborhood of D12If �Fgen is the surfa
e without boundary asso
iated to Fgen , � : Fgen �! �Fgen is thein
lusion and �� : H1(Fgen) �! H1( �Fgen) is the indu
ed morphism, then the \boundary
y
les" are Ker ��.3Or the Ja
o-Shalen-Johannson de
omposition.
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riti
al value 5(be
ause B � f0g). Then the same formula proves that the Dehn twist isnon-negative sin
e the orientation of the se
ond boundary is the opposite ofthe �rst; now the Dehn twist is non-negative and non-positive, hen
e equalto zero. That 
ontradi
ts the fa
t that the essential pie
es were distin
t. �In other words, let us 
all a singularity that provides a Seifert pie
e inthe de
omposition of f�1(S1r (0)) an essential singularity. We have provedthat at most one essential singularity 
an o

ur. The non-essential aÆnesingularities are ordinary quadrati
 singularities.3. Generalization of Za��denberg-Lin theoremLet us re
all Za��denberg-Lin theorem [ZL℄. For a proof using topologi
alarguments see [NR℄.Theorem 6. Let f be an irredu
ible polynomial with the �ber F0 = f�1(0)simply 
onne
ted then for some relatively prime natural numbers p and q (orfor p = 1 and q = 0): f � xp � yq:The following lemma links the topology of F0 to the 
ase without 
riti
alvalue at in�nity.Lemma 7. Let f be a redu
ed polynomial. Then Ba� � f0g and B1 = ? ifand only if F0 is a simply 
onne
ted set.Proof. If F0 is simply 
onne
ted then the irregular �ber is 
onne
ted andit is redu
ed be
ause f is a redu
ed polynomial, hen
e the generi
 �ber isalso 
onne
ted, then f is a primitive polynomial. Moreover �(F0) = +1so H1(F0) = f0g and by lemma 2, B � f0g. Let T0 be the tube f�1(�)where � is a small4 disk 
entered at 0. Then, as in the proof of lemma 2,by additivity of the Euler 
hara
teristi
 we have �(F0) = �(T0) = 1. Sin
ethe generi
 �ber is 
onne
ted then T0 is 
onne
ted and H1(T0) = f0g. Themorphism j0 : H1(F0) �! H1(T0) indu
ed by in
lusion, is an isomorphismif and only if 0 is a regular value at in�nity (see [ACD℄ for the 
ase whereF0 is 
onne
ted, and [Bo℄ for the general 
ase). In our situation j0 is anisomorphism sin
e H1(F0) = H1(T0) = f0g hen
e B1 = ?.Conversely, let suppose now Ba� � f0g and B1 = ?. As B1 = ?then F0 = f�1(0) has the homotopy type of f�1(�) \ B4R. But, alwaysbe
ause there is no 
riti
al value at in�nity, f�1(�) n B4R is just a produ
t�f�1(�) \ S3R��℄0;+1[ (where f�1(�) \ S3R is a tubular neighborhood inS3R of the link f�1(0) \ S3R). Then f�1(�) \ B4R has the same homotopytype as f�1(�). Now the polynomial f is primitive sin
e f is redu
ed andB � f0g, hen
e f�1(�) is 
onne
ted. So F0 is a 
onne
ted set. As the Euler
hara
teristi
 of the 
onne
ted set F0 is +1, it implies that all the irredu
ible
omponents of F0 are disks (possibly singular), 
rossing together, without
y
le (lemma 4). As a 
on
lusion F0 is a simply 
onne
ted set. �4Small enough in 
omparison to R that de�nes the link at in�nity f�1(0) \ S3R.
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riti
al value 6Remark. As a 
orollary if B = f0g with B1 = f0g then F0 is not 
onne
ted:by 
ontraposition if F0 is a 
onne
ted set then, as �(F0) = +1, all irredu
ible
omponents are disks (possibly singular). Sin
e there is no 
y
le (lemma 4)then F0 is simply 
onne
ted, thus B1 = ?.Za��denberg-Lin theorem admits the following generalization when f is notirredu
ible.Theorem 8. Let f be a redu
ed polynomial with Ba� = f0g and B1 = ?then f � xg(y) or f � x"y"0 nYi=1 �xp � �iyq�;with a non-
onstant polynomial g 2 C [y℄, "; "0 2 f0; 1g, p; q relatively primenumbers, n > 1, and f�igi=1;:::;n a family of distin
t non-zero 
omplex num-bers.This is stated in [ZL℄. As there is no proof of this result in the literature,we will give one. Our proof uses ideas from [BF℄, [NR℄ and [Ru℄, parti
-ularly it uses Za��denberg-Lin theorem for an irredu
ible 
omponent of thepolynomial f . We need the following lemma whi
h is a stronger version ofAbhyankar-Moh theorem.Lemma 9. Let C1 and C2 be two smooth disks with equations (f1 = 0) and(f2 = 0).� If C1 \ C2 = ? then f1f2 � x(x+ �), (� 2 C � ).� If C1 and C2 have one transversal interse
tion then f1f2 � xy.Proof. By Abhyankar-Moh theorem an equation for C1 is (x = 0). As in[NR℄ a parameterization of C2 is (P (t); Q(t)), with P;Q 2 C [t℄. If C2 doesnot interse
t C1 then P (t) is a non-zero 
onstant. If C2 interse
ts C1 transver-sally then, as in the proof of Abhyankar-Moh theorem by W. Neumann andL. Rudolph in [NR℄, polynomial automorphisms of type (x; y) 7! (x; y+�x�)enable us to 
hoose (y = 0) as an equation of C2. �Proof of the theorem. If there is no essential singularity, then singularitiesare ordinary quadrati
 singularities. As F0 is simply 
onne
ted then it is theunion of smooth disks C1; : : : ; Cr. Let us suppose that C1 and C2 interse
ttransversally. Then, by the lemma above, an equation of C1[C2 is (xy = 0),moreover another disk C3 
an not interse
t C1 and C2 otherwise there is a
y
le in G0 or an essential singularity. Then C3 has equation, for instan
e,(y + �3 = 0). The other disks Ci, i > 4 are parallel to C3 otherwise thereare 
y
les in G0, thus Ci has equation (y + �i = 0). Then f is algebrai
allyequivalent to xyQi(y + �i).Let us suppose that there is an essential singularity, then by lemma 5there is only one essential singularity. All the other singularities are ordinaryquadrati
 singularities. Moreover, as B1 = ? and as the tube f�1(S1r (0))is a Seifert manifold (lemma 5), then the link at in�nity f�1(0) \ S3R (S3R is
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riti
al value 7a 3-dimensional sphere with radius R � 1) is a Seifert link (that is to sayS3R n f�1(0) admits a Seifert �bration, and the 
omponents of the link are�bers for this �bration). By [NR, th. 2.7℄, as Ba� = f0g and B1 = ?, thislink at in�nity is the 
onne
ted sum of the lo
al links of the singularities off�1(0), that is to say the link at in�nity is the 
onne
ted sum of the lo
allink of the essential singularity with Hopf links. But a Seifert link 
an nothave su
h a stru
ture, then there is only one singularity. So the lo
al linkand the link at in�nity are isotopi
 and are a sublink ofO1 [O2 [ O(p; q) [ O(p; q) [ : : :Let explain the notations: in the sphere S3r of C 2 , O1, O2 are unknotssu
h that O1 [ O2 is the Hopf link; O(p; q) denotes a torus knot of type(p; q) (p and q are relatively prime non-zero natural numbers) su
h thatO1 [O2 [ O(p; q) [ O(p; q) [ : : : is isotopi
 to the link�(x = 0) [ (y = 0) [ (xp � yq = 0) [ (xp � 2yq = 0) [ : : : � \ S3r :We now prove that f 
an be written, up to algebrai
 equivalen
e, asrequired. We dis
uss a

ording to the number of smooth disks in F0.First 
ase. We assume that, in F0, there are two smooth disks with transver-sal interse
tion at the essential singularity. By lemma 9, up to algebrai
equivalen
e, an equation of f is xyg1(x; y) : : : gn(x; y). We have to provethat gi(x; y) = xp � �iyq. Let us 
onsider the polynomial xygi(x; y) andlet (P (t); Q(t)) be a polynomial inje
tive parameterization of the 
urve(gi(x; y) = 0). The lo
al link for the lo
ally irredu
ible singularity is alink of type O(p; q) so this parameterization 
an be written:(P (t) = aqtq + � � �+ aN tNQ(t) = bptp + � � �+ bM tMwith N > q and M > p. As (0; 0) is the only point of interse
tion between(xy = 0) and (gi(x; y) = 0) then P (t) = 0 implies Q(t) = 0 and then t = 0.So P is monomial: P (t) = aptp. For similar reasons Q(t) = bqtq, and thengi(x; y) = xp � �iyq.Se
ond 
ase. If F0 has only one smooth disk then for some 
oordinates anequation of f is xg1(x; y) : : : gn(x; y). As before we denote by (P (t); Q(t))a parameterization of (gi(x; y) = 0); we obtain again P (t) = aqtq (q > 2)but with Q(t) = bptp + � � � + bM tM . We 
an 
on
lude as in [NR, p. 434℄:the parameterization (aqtq; Q(t)) is inje
tive so Q(t) � Q(�t) has only oneroot t = 0 for all q-th root � of unity. Hen
e Q(t) is of the form Q(t) =bptp+F (tq) and the polynomial 
hange of 
oordinates (x; y) 7! (x; y�F (x)),that preserves the axis (x = 0), gives a parameterization (aqtq; bptp) in thesenew 
oordinates. So gi(x; y) = xp � �iyq in these 
oordinates.Third 
ase. If F0 has no smooth disk we 
an assume that for the de
om-position f = g1 : : : gn we have g1(x; y) = xp � yq by Za��denberg-Lin the-orem for the irredu
ible 
omponent (g1 = 0). Let (gi = 0) be another
omponent with parameterization (P (t); Q(t)) = (aqtq + � � � + aN tN ; bptp +



Polynomials with one 
riti
al value 8� � � + bM tM ). The link at in�nity for (gi = 0) is an iterated torus knot oftype O(m;n;m2; n2; : : : ;mk; nk) (see [Ru℄), with m = M= g
d(M;N) andn = N= g
d(M;N). But the link at in�nity for (gi = 0) is isotopi
 to lo
allink of the aÆne singularity of (gi = 0) and then is of type O(p; q). As in[NR℄ either O(m;n) = O(p; q) and then g
d(M;N) = 1 so M = p, N = qand the result is proved; or O(m;n) is the unknot and then M divides N orN divides M . It implies that qM 6= pN . As the 
omponents (g1 = 0) and(gi = 0) have only one interse
tion (at (0; 0)) the one variable polynomialg1(P (t); Q(t)) is equal to t`. For example if we assume that qM > pN then` = qM . But the valuation of g1(P (t); Q(t)) is the interse
tion multipli
ityof g1 and gi at (0; 0) and it is equal to pq. Thereby ` = pq and M = p andas before N = q. �4. Case Ba� = ? and B1 = f0gLet denote f = f1 � � � � � fr the de
omposition of f into irredu
iblefa
tors, let Ci = f�1i (0) be the plane algebrai
 
urve asso
iated to fi. We�rstly obtain an \abstra
t" 
lassi�
ation: we des
ribe the Ci's as pun
turedspheres.Proposition 10. In the 
ase Ba� = ? and B1 = f0g, we 
an reorder the(Ci)i so that� either C1 is a disk and for i = 2; : : : ; r, Ci is an annulus;� or C1; : : : ; Cr�1 are disks and Cr is a r-pun
tured sphere.This proposition has been obtained independently in [GP℄.Proof. Noti
e that, sin
e Ba� = ? the 
omponents Ci (i = 1; : : : ; r) aredisjoint, then ��C1�+ � � �+ ��Cr� = ��F0� = 1;and one of the 
omponent has positive Euler 
hara
teristi
. But as �(Ci) 6 1for all i, we 
an suppose that the 
omponents of Euler 
hara
teristi
 +1 areC1; : : : ; Cj (j > 1).We �rstly assume that j = 1; all the other 
omponents verify �(Ci) 6 0for i > 2, this implies that �(Ci) = 0 (i = 2; : : : ; r). As a 
on
lusion the
omponent C1 is a disk and the others are annuli.Se
ondly we suppose that j > 2. Be
ause of the Abhyankar-Moh theorem(lemma 9) we 
an assume that these disks C1; : : : ; Cj are parallel lines withequation (x = �1); : : : ; (x = �j). All the other 
omponents Ci (i > j) have atleast j+1 bran
hes at in�nity be
ause of the non-interse
tion with the lines:su
h a 
omponent Ci has j bran
hes at in�nity whose tangents at in�nity arethe j parallel lines that interse
t the line at in�nity at one point; if there isone other point at in�nity for Ci then there exists one other bran
h, if thereis no other point at in�nity then the line at in�nity is tangent to Ci, thatgives one more bran
h. Parti
ularly we have �(Ci) 6 2 � (j + 1) for i > j;
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riti
al value 9then 1 = ��F0� = ��C1�+ � � �+ ��Cj�+ ��Cj+1�+ � � � + ��Cr�6 j + (1� j) + � � �+ (1� j) 6 1:Thus this inequality is an equality; it implies that j + 1 = r and �(Cj+1) =2� (j + 1) = 2� r, parti
ularly there are exa
tly r bran
hes at in�nity. Allthe 
omponents are disks, ex
ept the last one whi
h is a r-pun
tured sphere.This 
ompletes the proof. �We now need a non-
ompa
t version of the Riemann-Hurwitz formula. Let�C and �C0 be 
ompa
t Riemann surfa
es and let � : �C �! �C0 be a surje
tiveholomorphi
 map of degree n. For S a �nite set of points in �C0 we denoteC0 = �C0 nS and C = �C n��1(S). For any point s 2 C0, �(s) is the multipli
ityof � at s 2 C0, we have Pt2��1(s)(�(t)� 1) = n�#��1(s).Theorem 11 (Riemann-Hurwitz formula).�(C) = n:�(C0)�Xs2C(�(s)� 1):Proof. The proof is similar to the standard proof, see for example [Ki℄. Byabuse, we also denote C0 = �C0 nN (S) and C = �C n��1(N (S)) where N (S) isthe union of small open disks around the points of S. Let (V 0; E0; F 0) be atriangulation of C0 with rami�
ation points 
ontained in ��1(V 0), we denotev0 = #V 0, e0 = #E0,... There exists a triangulation (V;E; F ) of C above(V 0; E0; F 0) su
h that e = ne0, f = nf 0 and v = nv0 �Pt2V 0(n�#��1(t)).Then �(C) = f � e+ v = n(f 0 � e0 + v0)�Pt2V 0(n�#��1(t)) = n�(C0)�Ps2C(�(s)� 1). �We will use this formula for a 
omponent C = Ci that is not a disk withthe natural 
ompa
ti�
ation �C of C: �C = C [ C1. We de�ne �C0 = C P 1and if the disks C1; : : : ; Cj have equation (x = �1); : : : ; (x = �j) we setS = f1; �1; : : : ; �jg and de�ne C0 = C P 1 n S = C n f�1; : : : ; �jg. Theproje
tion � : C �! C0 is de�ned by �(x; y) = x. Then � 
an be 
ontinuedto a holomorphi
 map on �C. If we prove that ��1(S) = C1 then we 
anapply Riemann-Hurwitz formula.We 
an give the algebrai
 
lassi�
ation.Proposition 12. Depending on the 
ases of proposition 10 above, for aredu
ed polynomial f with Ba� = ? and B1 = f0g then� either f � x�"Qni=1 (xp�q � �i) or f � x�"Qni=1 (xp � �i�q) with pand q relatively prime, " 2 f0; 1g, n > 1, f�igi=1;:::;n a �nite familyof distin
t non-zero 
omplex numbers. Moreover � = �(x; y) = xsy+`(x), with s > 0, ` 2 C [x℄ and deg ` < s (if s > 0 then `(0) 6= 0, ifs = 0 then ` = 0). If " = 1 then s > 0 and then in the �rst 
ase p(or q) is greater than 1.
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riti
al value 10� or f � gred (x)�g(x)y + h(x)� with g; h 2 C [x℄, deg g > 2, deg g >deg h and h(t) 6= 0 if g(t) = 0.The situation of the �rst 
ase of proposition 10 has been studied byS. Kaliman, we sket
h the beautiful proof of [Ka℄. Let g be an equationof the algebrai
 
urve C1 [ C where C1 is a smooth disk and C = Ci (i > 2)is a disjoint annulus.Lemma 13. g � x�xp � �q� or g � x�xp�q � 1�p; q are relatively prime natural numbers, and � = �(x; y) = xsy + `(x)(s > 0 in the �rst polynomial) with ` 2 C [x℄, deg ` < s and `(0) 6= 0 ifs > 0.Proof. By Abhyankar-Moh theorem we 
an assume that (x = 0) is the equa-tion for the disk C1, let k(x; y) be an equation of C in these 
oordinates, thereexists m > 0 su
h that k(x; x�my) = xeh(x; y) with e < 0, h 2 C [x; y℄ andh(0; y) = yn, n > 1.If C0 denotes the 
urve of equation (h = 0) then the \blow-up" (x; y) 7!(x; x�my) gives an isomorphism from C0nf(0; 0)g to C, so C0 is homeomorphi
to a disk and a

ording to Za��denberg-Lin theorem the polynomial xh(x; y)equal u(up0�vq0), the new 
oordinates are given by u = x and v = y+'(x),then h(x; y) = xp0 � (y + '(x))q0 . Returning to k by k(x; y) = xeh(x; xmy),and distinguishing the 
ases e + p0 = 0 and e + p0 > 0 leads to k(x; y) =1 � xp�q and k(x; y) = xp � �q, with �(x; y) = xsy + `(x). By triangularautomorphisms (x; y) 7! (x; y + �x�) we 
an assume that deg ` < s. Thatends the proof. �The generalization to the 
ase where there are several annuli, 
orrespondsto the generalization of Za��denberg-Lin theorem (theorem 8).Proof of proposition 12. We deal with the se
ond 
ase of proposition 12, thedisks are given by an equation Qr�1i=1 (x� �i) and the equation of Cr isr�1Yi=1(x� �i)mi�am(x)ym + � � � + a1(x)y�+ h(x)with h(�i) 6= 0, mi > 0. The proje
tion � : Cr �! C0 = C n f�1; : : : ; �r�1ggiven by �(x; y) = x, is of degree m and verify the hypothesis of ourRiemann-Hurwitz formula sin
e the points at in�nity of Cr 
orrespond to�1; : : : ; �r�1. As �(Cr) = �(C0) then m = 1 and am is a 
onstant. Theequation of Cr is now Qr�1i=1 (x��i)miy+ h(x) and by some triangular auto-morphisms (x; y) 7! (x; y + �x�) we 
an assume that deg h < degQr�1i=1 (x��i)mi . �
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riti
al value 115. Case Ba� = f0g and B1 = f0gNotations are those of the previous paragraph.Proposition 14. For a redu
ed polynomial f with Ba� = f0g and B1 = f0g� either C1 and C2 are disks, interse
ting transversally, and Ci (i =3; : : : ; r) are disjoint annuli;� or C1; : : : ; Cj ; Cj+1; : : : ; Cr�1 are disjoint disks and Cr is a (j + 1)-pun
tured sphere. Moreover the 
urves Cj+1; : : : ; Cr�1 interse
t Crtransversally at one point.The 
orresponding algebrai
 list is� either f � xyQi �xpyq � �i� with p > 1 and q relatively prime, �i 2C � .� or f � gred (x)k(x)�g(x)y + h(x)� with g; h; k 2 C [x℄ (g and k non
onstant, k redu
ed), deg h < deg g and if g(t) = 0 then h(t) 6= 0.Lemma 15. One of the irredu
ible 
omponent of F0 = f�1(0) is a smoothdisk.We will make the distin
tion between \smooth" and \smooth in F0": asmooth 
omponent is not ne
essarily smooth in F0, there may exist singu-larities on this 
omponent 
oming from interse
tion with other 
omponents.Proof of the lemma. Let us re
all that from lemma 5 we know that there is atmost only one essential singularity, and aÆne non-essential singularities areordinary quadrati
 singularities. The non-essential singularities at in�nity
orrespond to a bamboo5 for the divisor at in�nity ��1(L1) \ ��1(0) forthe value 0 whi
h interse
ts the 
ompa
ti�
ation of some smooth disks andanother 
omponent (possibly singular) of F0, moreover the multipli
ities of�f equal to 1 on all the 
omponents of the bamboo. A typi
al example isgiven by Broughton polynomial f(x; y) = x(xy + 1), another example isgiven in paragraph 6.Let us noti
e that one of the 
omponents of F0 is a disk (possibly sin-gular) be
ause �(F0) = +1. We �rstly suppose that no aÆne singularity isessential. Then aÆne singularities are ordinary quadrati
 singularities anda disk of F0 is smooth be
ause it 
an not interse
t itself as there is no 
y
lein G0.In a se
ond time if there exists one essential aÆne singularity, it is uniqueand singularities at in�nity are non-essential. As B1 6= ? su
h singularitiesdo exist. Then one of the disks asso
iated to a non-essential singularity atin�nity is smooth. �Proof of proposition 14. Let C1 be the disk of lemma 15. Let denote C1; : : : ; Ckthe smooth disks parallel to C1. A

ording to Abhyankar-Moh theorem, we
an suppose that equations for these disks are (x = �1); : : : ; (x = �k). Let Cbe one of the Ci (i > k) whi
h does not interse
t one of the C1; : : : ; Ck: su
h5Ea
h 
omponent interse
ts at most two other 
omponents.
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riti
al value 12a C exists otherwise F0 is a 
onne
ted set and as B1 = f0g this is impos-sible by the remark below lemma 7. After reordering the disks (Ci)i=1;:::;kwe denote by C1; : : : ; Cj (1 6 j 6 k) the disks that do not interse
t C. Thenas above (proposition 10) �(C) = 1 � j, and C has exa
tly j + 1 bran
hesat in�nity. Components other than C; C1; : : : ; Cj do not 
ontribute to Euler
hara
teristi
: that is to say the other disks have interse
tion with one ofthe C; C1; : : : ; Cj at one point and at exa
tly one point be
ause G0 has no
y
le; 
omponents that are not disks are annuli.For C0 = C n f�1; : : : ; �jg we have �(C) = �(C0) and the points at in�nity
orrespond to �1; : : : ; �j . The Riemann-Hurwitz formula for the 
overing� : C �! C0 de�ned by (x; y) 7! x proves that � is non-bran
hed and that Cis smooth.Singularities 
oming from interse
tions with other 
omponents 
an only betransversal interse
tions of a smooth disk and another 
omponent: the keypoint is the topology of F0. First of all, to keep �(F0) = +1, two 
omponentswith non-positive Euler 
hara
teristi
 
an not interse
t; in a se
ond timea disk that interse
ts the disk C1 is smooth, otherwise it 
ontradi
ts the
on�guration for non-essential singularities at in�nity; and �nally to avoid
y
les in G0, only two dire
tions for disks (for example (x = 0) and (y =0)) 
an o

ur, hen
e there are no multiple points of order greater than 2.We have just proved that the aÆne singularities were ordinary quadrati
singularities.We end the 
lassi�
ation as in proposition 12. The main di�eren
e 
omesfrom some lines that give ordinary quadrati
 singularities. If j = 1 and C1is not smooth in F0 then, for Euler 
hara
teristi
 reasons, there 
an be onlyone more disk C2, and C2 interse
ts transversally C1 at one point. With thealgebrai
 
lassi�
ation of annuli, we see that only one kind of annuli 
ano

ur: f � xyYi �xpyq � �i�;where f�ig is a family of distin
t non-zero 
omplex numbers.For similar reasons, if j = 1 and the disk C1 is smooth in F0, then onlyone annulus 
an o

ur, but disks Ci (i = 2; : : : ; r � 1) parallel to C1 
aninterse
t this annulus. Thenf � xYi �x� �i��xsy + `(x)�:The 
ase j > 2 is treated as in proposition 12 with parallel lines added:f �Yi (x� �i)Yi (x� �i)�Yi (x� �i)miy + h(x)�:This 
ompletes the proof. �
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riti
al value 13The tabular summarizes the algebrai
 list of redu
ed polynomials withone 
riti
al value, notations are those of theorem 8, propositions 12 and 14.Ba� = ? Ba� = f0gB1 = ? x yg(x) orx"y"0Qi(xp � �iyq)B1 = f0g x�"Qi (xp�q � �i) orx�"Qi (xp � �i�q) orgred (x)(g(x)y + h(x)) xyQi(xpyq � �i) orgred (x)k(x)(g(x)y + h(x))6. Topologi
al 
lassifi
ationRe
all that two polynomials f and g are topologi
ally equivalent (f � g)if there exists homeomorphisms � and 	 su
h that the following diagram
ommutes: C 2 � //f
��

C 2g
��C 	 // C :Two algebrai
ally equivalent polynomials are topologi
ally equivalent butthe 
onverse is false. For example f(x; y) = x(x2y+1) and g(x; y) = x(x2y+x + 1) are topologi
ally equivalent (they have the same 
olored graph, seebelow) but are not algebrai
ally equivalent (an algorithm to determine iftwo polynomials are algebrai
ally equivalent is given in [Wi℄).For a polynomial f with resolution map �, we de�ne the 
olored graph Gf .A vertex of the dual graph of the resolution of f is 
olored by the value of �on the irredu
ible 
omponent asso
iated to the vertex. In the 
ase B = f0gthe 
olors are 1 (that 
orresponds to the subgraph G1), 0 (for G0) andCP 1 for the di
riti
al 
omponents. Moreover the verti
es are weighted bythe auto-interse
tion of the 
omponent. In our situation all the 
omponentsare rational and we do not need to add the genus for ea
h 
omponent.For example, here is the graph for the polynomials f and g de�ned above.r r r r r rr r r r r������ ������(�1;1) (�4;1) (�1; CP 1 )(�2; 0) (�2; 0) (�1; 0)

(�2;1)(�2;1)(�2;1)(�1; CP 1 )(�1; 0)
Two 
olored graphs are equivalent if after a sequen
e of absorptions andblowing-ups (see the pi
ture below) they are isomorphi
 (with respe
t to the
olors and weights). We do not authorize di
riti
al 
omponents to disappearin this sequen
e, that is to say the 
olor 
 is in f0;1g.
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al value 14r����... (e+1; 
) r r(e; 
) (�1; 
)����...-�r r r(e; 
) (e0; 
)(�1; 
)����... ����... r r(e+1; 
)(e0+1; 
)����... ����...-�Proposition 16. Let two redu
ed polynomials have only one 
riti
al value.If they have equivalent 
olored graphs then they are topologi
ally equivalentThis proposition 
an not be generalized to the 
ase of several 
riti
alvalues, a 
ounter-example is given in [Ar℄. The 
onverse is true: the mainideas for proving this are in the proof of the next proposition or refer to [Fo℄.Proof. Let f and g be polynomials with just one 
riti
al value 0 and withequivalent 
olored graphs. Let (�f ; �f), (�g; �g) 
ome from the resolution of fand g. One 
an suppose, after some blowing-ups and absorptions, that theirgraphs are equal. We set Df;0 = �f�1(0) and Dg;0 = �g�1(0).By standard arguments ([A'C℄, [Du℄, [Fo℄), a small neighborhood of Df;0is homeomorphi
 to a small neighborhood of Dg;0. As all the 
omponentsof Df;0 and Dg;0 are rational the monodromies for �f and �g indu
ed by asmall 
ir
le around the value 0 a
t equivalently: that is to say the followingdiagram 
ommutes: �f�1(�) ��0 //f
��

�g�1(�0)g
��� 	0 // �0where ��0 and 	0 are homeomorphisms and � and �0 topologi
al 
loseddisks of C with 0 2 Int� \ Int�0.Let D1f;0 = Df;0 \ ��1f (L1) be the part of Df;0 that 
orresponds to theirregularity at in�nity of the value 0 (D1g;0 is set in the same way). Then��0 de�nes an homeomorphism between D1f;0 and D1g;0. Then the homeo-morphism ��0 from �f�1(�) nD1f;0 to �g�1(�0) nD1g;0 
an be restri
ted to anhomeomorphism �0 that respe
ts the �bration be
ause f Æ �f = �f on theset �f�1(�)nD1f;0. We have proved that f and g are topologi
ally equivalentin a neighborhood of the zero �ber:f�1(�) �0 //f

��

g�1(�0)g
��� 	0 // �0:We now explain how to 
ontinue theses homeomorphisms. As the only
riti
al value for f is in � the �bration f : f�1(C n�) �! C n� is iso-morphi
 to the �bration f � id : f�1(��) � R+ �! �� � R+ . It provides
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riti
al value 15homeomorphisms �f and  f (see diagrams). For g we obtain homeomor-phisms �g and  g. But the �bration f � id above �� � R+ is isomorphi
to the �bration g� id above ��0�R+ , the 
orresponding homeomorphismsare �1 = �0 � id and 	1 = 	0 � id.f�1(C n�) �f
//f

��

f�1(��)� R+ �1 //f�id
��

g�1(��0)� R+g�id
��

g�1(C n�0)�g
oo g

��C n�  f // ��� R+ 	1 // ��0 � R+ C n�0: gooThen �0 
an be 
ontinued by ��1g Æ �1 Æ �f and 	0 by  �1g Æ	1 Æ  f . �Theorem 17. A redu
ed polynomial with at most one 
riti
al value is topo-logi
ally equivalent to one, and only one, of the following polynomials (no-tations are those of the introdu
tion):Ba� = ? Ba� = f0gB1 = ? x ygred (x) orxQni=1(xp � iy) orx"y"0Qni=1(xp � iyq)B1 = f0g xQni=1 (xpyq � i) orx�Qni=1 (xp�q � i) orx�"Qni=1 (xp � i�q) orgred (x)(g(x)y + 1) xyQni=1(xpyq � i) orgred (x)k(x)(g(x)y + 1)Proof. We �rstly have to prove that the list of polynomials up to algebrai
equivalen
e 
an be redu
ed, up to topologi
al equivalen
e, to the list above.Finally we shall prove that two distin
t polynomials of this list are nottopologi
ally equivalent.For the 
ases with B1 = ?, repla
ing �i by i does not 
hange the poly-nomial, up to topologi
al equivalen
e. Moreover the list, for theses 
ases, isnot redundant.Let study what happens for the 
ase B1 = f0g. Let f be one of thepolynomials 
oming from the algebrai
 list, and let f 0 be the 
orrespondingpolynomial with the 
onstant 1 instead of the polynomial `(x) or h(x) andwith i instead of �i. We may �nd f � f 0 by proving that the graphs Gf andGf 0 are equivalent. As f and f 0 have the same behavior at �nite distan
e,we just have to study what happens at in�nity.Let F (x; y; z) be the homogeneous polynomial asso
iated to f , P1 = (1 :0 : 0) and P2 = (0 : 1 : 0) are the two points at in�nity of f ; we denotef1(y; z) = F (1; y; z), f2(x; z) = F (x; 1; z) the lo
al equations of F at thepoints P1, P2. To 
al
ulate the part of Gf at in�nity, we have two |equivalent| 
hoi
es.
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riti
al value 16Firstly we 
an 
al
ulate the irregular link at in�nity f�1(0) \ S3R (resp.f 0�1(0) \ S3R), it is a suÆ
ient 
ondition sin
e the (single) irregular linkdetermines the regular links at in�nity f�1(s) \ S3R (s 6= 0), see [NL℄.Se
ondly, we 
an 
al
ulate the Puiseux expansions of the bran
hes off1 (and f2) and the interse
tion multipli
ities between the bran
hes of f1(and between the bran
hes of f2) by taking into a

ount the line at in�nitywith lo
al equation (z = 0). It is a suÆ
ient 
ondition sin
e if we know thetopology of zfi then one 
an re
over the topology of the family (fi�tzd)t2CP 1(see [LW2℄) as t = 0 and t =1 are the only 
riti
al values for this family.We will use the se
ond method: f � f 0 if and only if f1 and f 01 (andf2 and f 02) have equivalent Puiseux expansions and the same interse
tionmultipli
ities.We will detail the 
al
ulus for f(x; y) = x�Qni=1 (xp�q � �i) with �(x; y) =xsy + `(x) = xsy + as�1xs�1 + � � � + a0, a0 6= 0 and n > 1, the 
al
ulus aresimilar for the other polynomials. Then f 0(x; y) = x�0Qi (xp�0q � i) and�0(x; y) = xsy + 1. The lo
al equation of F at P1 isf1(y; z) =(y + as�1z2 + � � �+ a0zs+1)�Yi �(y + as�1z2 + � � �+ a0zs+1)q � �izp+q(s+1)� :A similar formula holds for f 01. The bran
hes of f1 and f 01 are smooth andinterse
t the line at in�nity (z = 0) transversally. Moreover the interse
-tion multipli
ities for the bran
hes of f1 are independent of the 
oeÆ
ientsas�1; : : : ; a1, of a0 6= 0, and of the �i 6= 0: let `1(y; z) = y + as�1z2 + � � � +a0zs+1 then m0(`1(y; z); `q1(y; z) � �izp+q(s+1)) = p + q(s + 1); for i 6= j,m0(`q1(y; z) � �jzp+q(s+1); `q1(y; z) � �izp+q(s+1)) = q(p+ q(s+ 1)) (see howto 
al
ulate interse
tion multipli
ities below), so f1 and f 01 have equivalentPuiseux expansions and the same interse
tion multipli
ities.The following lemma allows us to 
al
ulate interse
tion multipli
ities; the�rst point is well-known (see [BK℄ or [Di℄), the se
ond point is a 
onsequen
eof the �rst.Lemma 18. Let f; g; f1; f2 be irredu
ible plane 
urve germs at 0.� Let Kf ;Kg be the lo
al links of f and g. Then the interse
tion mul-tipli
ity verifym0(f; g) = dimC C fx; yg=(f(x; y); g(x; y))= lk(Kf ;Kg) = valt(f Æ p(t))with lk is the linking number, val is the valuation and p(t) = (tn; '(t))is a Puiseux parameterization for the 
urve (g = 0) (whi
h is sup-posed not to 
ontain (y = 0)).
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riti
al value 17� Let t; t0 be 
omplex numbers with t 6= t0 and t0 6= 0. Thenm0(f1f2; g) = m0(f1; g) +m0(f2; g);m0(f + tg; f + t0g) = m0(f; f + t0g):For the se
ond point at in�nity P2 the lo
al equation of F isf2(x; z) = x(xs + as�1xs�1z2 + � � �+ a0zs+1)�Yi �xp(xs + as�1xs�1z2 + � � � + a0zs+1)q � �izp+q(s+1)� :All the bran
hes interse
t transversally the line at in�nity, and the topol-ogy of ea
h bran
h is given by one of the Puiseux expansions x = 0,x = z s+1s and x = z p+q(s+1)p+qs and is independent of as�1; : : : ; a1, of a0 6= 0and of the �i 6= 0. Moreover interse
tion multipli
ities are also indepen-dent of the 
oeÆ
ients: let `2(x; z) = xs + as�1xs�1z2 + � � � + a0zs+1 thenm0(x; `2(x; z)) = s + 1, m0(x; xp`2(x; z)q � �jzp+q(s+1)) = p + q(s + 1),m0(`2(x; z); xp`2(x; z)q � �jzp+q(s+1)) = s(p + q(s + 1)), and for i 6= j,m0(xp`2(x; z)q��izp+q(s+1); xp`2(x; z)q��jzp+q(s+1)) = (p+qs)(p+q(s+1)).As a 
on
lusion f1, f 01 and f2, f 02 have the same bran
hes and the bran
heshave the same tangen
y, so f and f 0 are topologi
ally equivalent.Finally, we shall prove that the list is non-redundant. As before, wedetail the 
al
ulus for the polynomial f(x; y) = x�Qni=1(xp�q � i) with� = xsy+1; for the other polynomials the method is the same. Let supposethat another polynomial, f 0, of the topologi
al list verify f � f 0. Then f 0has the same type as f , that is to say that f 0(x; y) = x�0Qni=1(xp0�0q0 � i)with �0 = xs0y+1. As f � f 0, the lo
alizations f1 and f 01 (resp. f2 and f 02) atP1 (resp. P2) have equivalent Puiseux expansions and the same interse
tionmultipli
ities. We dedu
e from the 
al
ulus of interse
tion multipli
ities atP2 that s + 1 = s0 + 1 and at P1 that p + q(s + 1) = p0 + q0(s0 + 1) andq(p+ q(s+1)) = q0(p0+ q0(s0+1)). It implies that s = s0, p = p0, q = q0 andthen f = f 0. �A
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