
POINCARÉ�REEB GRAPHS OF REAL ALGEBRAIC DOMAINS

ARNAUD BODIN, PATRICK POPESCU-PAMPU, AND MIRUNA-�TEFANA SOREA

Abstract. An algebraic domain is a closed topological subsurface of a real a�ne plane whose
boundary consists of disjoint smooth connected components of real algebraic plane curves. We
study the non-convexity of an algebraic domain by collapsing all vertical segments contained in
it: this yields a Poincaré�Reeb graph, which is naturally transversal to the foliation by vertical
lines. We show that any transversal graph whose vertices have only valencies 1 and 3 and are
situated on distinct vertical lines can be realized as a Poincaré�Reeb graph.

1. Introduction

In this article, an a�ne plane is a principal homogeneous space over a real vector space of

dimension two, that is, a vector space of dimension two with forgotten origin. An algebraic

domain D is a closed subset of an a�ne plane, homeomorphic to a surface with boundary, whose

boundary C is a union of disjoint smooth connected components of real algebraic plane curves.

This paper is dedicated to the study of the non-convexity of algebraic domains.

Context and previous work. In [7, 9], the third author studied the non-convexity of the

disks D bounded by the connected components C of the levels of a real polynomial function

f(x, y) contained in su�ciently small neighborhoods of strict local minima. The principle was to

collapse to points the maximal vertical segments contained inside D. This yielded a special type

of tree embedded in a topological space homeomorphic to R2. It was called the Poincaré�Reeb

tree associated to C and to the projection (x, y) 7→ x, and it measured the non-convexity of D.

The terminology �Poincaré�Reeb� introduced in [7, De�nition 2.24] was inspired by a similar

construction used in Morse theory, namely by the classical graph introduced by Poincaré in his

study of 3-manifolds [5, 1904, Fifth supplement, p. 221], and rediscovered by Reeb [6] in arbitrary

dimension. Conversely, given a tree T of a special kind embedded in a plane, [7, Theorem 3.34]

presented a construction of a polynomial function f(x, y) with a strict local minimum at (0, 0),

whose Poincaré�Reeb tree near (0, 0) is T .

Poincaré�Reeb graphs of real algebraic domains. In this paper we extend the previous

method of study of non-convexity to algebraic domains D in R2. When D is compact, the

collapsing of maximal vertical segments contained in it yields a �nite planar graph which is not

necessarily a tree, called the Poincaré�Reeb graph of D relative to the vertical direction. See

Figure 1 for a �rst idea of the de�nition. In it is represented also a section of the collapsing map

above this graph, called a Poincaré�Reeb graph in the source. It is well-de�ned up to isotopies

stabilizing each vertical line. Such a section exists whenever the projection x : R2 → R is in

addition generic relative to the boundary C of D, that is, C has no vertical bitangencies, no

vertical in�ectional tangencies and no vertical asymptotes.
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C
D

Figure 1. A Poincaré�Reeb graph: a curve C bounding a real algebraic domain

D (left); a Poincaré�Reeb graph in the source (center); the Poincaré�Reeb graph

(right).

When D is non-compact but the projection x : R2 → R is still proper in restriction to it, one

gets an analogous graph, which has this time at least one unbounded edge. When the properness

assumption on the projection is dropped but one assumes instead its genericity relative to C,
then one may still de�ne a Poincaré�Reeb graph in the source, again well-de�ned up to isotopies

stabilizing the vertical lines.

Finite type domains in vertical planes. In order to be able to use our construction of

Poincaré�Reeb graphs for the study of more general subsets of a�ne planes than algebraic

domains, for instance to topological surfaces bounded by semi-algebraic, piecewise smooth or

even less regular curves, we give a purely topological description of the setting in which it may

be applied. Namely, we de�ne the notion of domain of �nite type D inside a vertical plane (P, π):
here π : P → R is a locally trivial �bration of an oriented topological surface P homeomorphic

to R2 and D is a closed topological subsurface of P, such that the restriction π|D is proper and

the restriction π|C to the boundary C of D has a �nite number of topological critical points.

Main theorem. Our main result is an answer in the generic case to the following question: given

a transversal graph in a vertical plane (P, π), is it possible to �nd an algebraic domain whose

Poincaré�Reeb graph is isomorphic to it? Namely, we show that each transversal graph
whose vertices have valencies 1 or 3 and are situated on distinct levels of π arises up
to isomorphism from an algebraic domain in R2 such that the function x : R2 → R
is generic relative to it. Our strategy of proof is to �rst realize the graph via a smooth

function. Then we recall a Weierstrass-type theorem that approximates any smooth function by

a polynomial function and we adapt its use in order to control vertical tangencies. In this way

we realize any given generic compact transversal graph as the Poincaré�Reeb graph of a compact

algebraic domain. Finally, we explain how to construct non-compact algebraic domains realizing

some of the non-compact transversal graphs. Roughly speaking, we do this by adding branches

to a compact curve.

Structure of the paper. Section 2 is devoted to the de�nitions and several general properties

of the notions vertical plane, �nite type domain, Poincaré�Reeb graph, real algebraic domain

and transversal graph in the compact setting. Section 3 is dedicated to the case where the real

algebraic domain D is compact and connected. In it we present the main result of our paper,

namely the algebraic realization of compact, connected, generic transversal graphs as Poincaré�

Reeb graphs of connected algebraic domains (see Theorem 3.5). Section 4 presents the case where

D is non-compact and C is connected. Finally, in Section 5 we focus on the general situation,

where D may be both non-compact and disconnected.
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2. Poincaré�Reeb graphs of domains of finite type in vertical planes

2.1. Algebraic domains

An a�ne plane P is a principal homogeneous space under the action of a real vector space of

dimension 2. It has a natural structure of real a�ne surface (the term �a�ne� being taken now

in the sense of algebraic geometry) and also a canonical compacti�cation into a real projective

plane. Therefore, one may speak of real-valued polynomial functions f : P → R as well as

of algebraic curves in P of given degree. We are interested in the following types of surfaces

embedded in a�ne planes:

De�nition 2.1. An algebraic domain is a closed subset D of an a�ne plane, homeomorphic to a

surface with boundary, whose boundary C is a disjoint union of �nitely many smooth connected

components of real algebraic plane curves.

Example 2.2. Consider the algebraic curve C1 of equation (f1(x, y) = 0) with f1(x, y) = y2 −
(x − 1)(x − 2)(x − 3) and C2 of equation (f2(x, y) = 0) with f2(x, y) = y2 − x(x − 4)(x − 5).

Each of these curves has two connected components, a compact one (an oval denoted by Ci) and
a non-compact one. Let D be the ring surface bounded by C1 and C2. By de�nition, it is an

algebraic domain.

Figure 2. The algebraic domain D bounded by C1 and C2.

2.2. Domains of �nite type in vertical planes

Assume that D is an algebraic domain in R2. We will study its non-convexity by collapsing to

points the maximal vertical segments contained inside D (see De�nition 2.11 below). The image

of R2 by such a collapsing map cannot be identi�ed canonically to R2, and it has not even a

canonical structure of a�ne plane. But in many cases it is homeomorphic to R2, it inherits from

the starting a�ne plane R2 a canonical orientation and the function x : R2 → R descends to it

as a locally trivial topological �bration. This fact motivates the next de�nition:

De�nition 2.3. A vertical plane is a pair (P, π) such that P is a topological space homeomorphic

to R2, endowed with an orientation, and π : P → R is a locally trivial topological �bration. The

map π is called the projection of the vertical plane and its �bers are called the vertical lines of the

vertical plane. A vertical plane (P, π) is called a�ne if P is an a�ne plane and π is a�ne, that

is, a polynomial function of degree one. The canonical a�ne vertical plane is (R2, x : R2 → R).

Let (P, π) be a vertical plane. As the projection π is locally trivial over a contractible base, it

is globally trivializable. This implies that P is homeomorphic to the Cartesian product R× V ,
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where V denotes any vertical line of (P, π). The assumption that P is homeomorphic to R2

implies that the vertical lines are homeomorphic to R. We will say that a subset of a vertical

line of (P, π) which is homeomorphic to a usual segment of R is a vertical segment.

Given a curve in a vertical plane, we may distinguish special points of it:

De�nition 2.4. Let (P, π) be a vertical plane and C a curve in it, that is, a closed subset of it

which is a topological submanifold of dimension one. The topological critical set Σtop(C) of C
consists of the topological critical points of the restriction π|C , which are those points p ∈ C in

whose neighborhoods the restriction π|C is not a local homeomorhism onto its image.

P1

C

P2

C

Q

C

Figure 3. Two topological critical points P1 and P2 (which are critical points in

the di�erential setting). The in�ection point Q is not a topological critical point

but is a critical point in the di�erential setting.

Remark 2.5. If C is an algebraic curve contained in an a�ne vertical plane, the topological critical

set Σtop(C) is contained in the usual critical set Σdi�(C) of π|C , but is not necessarily equal to it.

For instance, any in�ection point of C with vertical tangency and at which C crosses its tangent

line belongs to Σdi�(C) \ Σtop(C) (see Figure 3).

The topological critical set Σtop(C) is a closed subset of C. In the neighborhood of an isolated

topological critical point, the curve has a simple behavior:

Lemma 2.6. Let (P, π) be a vertical plane and C a curve in it. Let p ∈ C be an isolated

topological critical point. Then C lies locally on one side of the vertical line passing through p.

Moreover, there exists a neighborhood of p in C, homeomorphic to a compact segment of R, and
such that the restrictions of π to both subsegments of it bounded by p are homeomorphisms onto

their images.

Proof. Consider a compact arc I of C whose interior is disjoint from Σtop(C). Identify it home-

omorphically to a bounded interval [a, b] of R. The projection π becomes a function [a, b] → R
devoid of topological critical points in (a, b), that is, a strictly monotonic function. Consider now

two such arcs I1 and I2 on both sides of p in C. The relative interior of their union I1 ∪ I2 is a

neighborhood with the stated properties. Moreover, I1 ∪ I2 lies on one side of the vertical line

passing through p: otherwise, p would not be a topological critical point of π|C . □

As explained above, in this paper we are interested in the non-convexity of algebraic domains

relative to a given �vertical� direction. But the way of studying them through the collapse of

vertical segments may be extended to other kinds of subsets of real a�ne planes, for instance

to topological surfaces bounded by semi-algebraic, piecewise-smooth or even less regular curves,

provided they satisfy supplementary properties relative to the chosen projection. De�nition 2.7

below describes the most general context we could �nd in which the collapsing construction

yields a new vertical plane and a �nite graph in it, possibly unbounded. It is purely topological,

involving no di�erentiability assumptions.
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De�nition 2.7. Let (P, π) be a vertical plane. Let D ⊂ P be a closed subset homeomorphic to

a surface with non-empty boundary. Denote by C its boundary. We say that D is a domain of

�nite type in (P, π) if:
(1) the restriction π|D : D → R is proper;

(2) the topological critical set Σtop(C) is �nite.

Example 2.8.

C
D

C

D

C

D

Figure 4. One example of a domain of �nite type (left). Two examples of

domains that are not of �nite type (center and right).

Condition (1) implies that the restriction π|C : C → R is also proper, which means that C has

no connected components which are vertical lines or have vertical asymptotes. For instance,

consider an algebraic domain contained in the positive quadrant of the canonical vertical plane

R2, limited by two distinct level curves of the function xy (see the middle drawing of Figure 4).

It satis�es condition (2) as it has no topological critical points, but as C has a vertical asymptote

(the y-axis), it does not satisfy condition (1), therefore it is not a domain of �nite type. Note

that condition (1) is stronger than the properness of π|C . For instance, the upper half-plane in

(R2, x) does not satisfy condition (1), but x|C is proper for it (see the right drawing of Figure 4).

We distinguish two types of topological critical points on the boundaries of domains of �nite

type:

De�nition 2.9. Let (P, π) be a vertical plane and D ⊂ P a domain of �nite type, whose boundary

is denoted by C. A topological critical point of C is called:

� an interior topological critical point of D if the vertical line passing through it lies locally

inside D;

� an exterior topological critical point of D if the vertical line passing through it lies locally

outside D.

P

Q

C

D

Figure 5. Example of an exterior topological critical point P and an interior

topological critical point Q of D.

One has the following consequence of De�nition 2.7:
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Proposition 2.10. Let (P, π) be a vertical plane and D ⊂ P a domain of �nite type. Denote by

C its boundary. Then:

(1) each topological critical point of π|C is either interior or exterior in the sense of De�nition

2.9;

(2) the �bers of the restriction π|D : D → R are homeomorphic to �nite disjoint unions of

compact segments of R;
(3) the curve C has a �nite number of connected components.

Proof.

(1) This follows directly from Lemma 2.6 and De�nition 2.9.

(2) Let us consider a point x0 ∈ R. By De�nition 2.7 (1), since the set {x0} is compact, we

obtain that the �ber π−1
|D (x0) is compact. Let now p be a point of this �ber. By looking

successively at the cases where p ∈ D \ C, p ∈ C \ Σtop(C), p is an interior and p is an

exterior topological critical point, we see that there exists a compact vertical segment

Kp, neighborhood of p in the vertical line π−1(x0), such that π−1
|D (x0)∩Kp is a compact

vertical segment.

p1

p2

p3

C
D

x0

Figure 6. Di�erent types of point p in π−1(x0) ∩ D.

As π−1
|D (x0) is compact, it may be covered by a �nite collection of such segments Kp.

This implies that π−1
|D (x0) is a �nite union of vertical segments (some of which may be

points).

(3) Let ∆top(C) ⊂ R be the topological critical image of π|C , that is, the image π(Σtop(C)) of
the topological critical set. As by De�nition 2.7, Σtop(C) is �nite, ∆top(C) is also �nite.

Therefore, its complement R \ ∆top(C) is a �nite union of open intervals Ii. As π|D is

proper, this is also the case of π|C . Therefore, for every such interval Ii the preimage

π−1
|C (Ii) is a �nite union of arcs. This implies that C is a �nite union of arcs and points,

therefore it has a �nite number of connected components.

□

2.3. Collapsing vertical planes relative to domains of �nite type

Next de�nition formalizes the idea of collapsing the maximal vertical segments contained in a

domain of �nite type, mentioned at the beginning of Subsection 2.2.

De�nition 2.11. Consider a vertical plane (P, π) and let D ⊂ P be a domain of �nite type. We

say that two points P and Q of P are vertically equivalent relative to D, denoted P ∼D Q, if the

following two conditions hold:
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� P and Q are on the same �ber of π, that is π(P ) = π(Q) =: x0 ∈ R;
� either the points P and Q are on the same connected component of π−1(x0) ∩ D, or

P = Q /∈ D.

Denote by P̃ the quotient P/∼D of P by the vertical equivalence relation relative to D. We call

it the D-collapse of P. The associated quotient map ρD : P → P̃ is called the collapsing map

relative to D.

P
Q

R

D

x0

Figure 7. The points P and Q are equivalent : P ∼D Q. However, P and Q

are not equivalent to R.

Next proposition shows that the D-collapse of P is naturally a new vertical plane, which is the

reason why we introduced this notion in De�nition 2.3.

Proposition 2.12. Let (P, π) be a vertical plane and D be a domain of �nite type in it. Consider

the collapsing map ρD : P → P̃ relative to D. Then:

� P̃ is homeomorphic to R2;

� the projection π descends to a function π̃ : P̃ → R;
� ρD is a homeomorphism from P \ D onto its image;

� if one endows P̃ with the orientation induced from that of P by the previous homeomor-

phism, then (P̃, π̃) is again a vertical plane, and the following diagram is commutative:

P P̃

R
π

ρD

π̃

The proof of Proposition 2.12 is similar to that of [9, Proposition 4.3].

2.4. The Poincaré�Reeb graph of a domain of �nite type

We introduce now the notion of Poincaré�Reeb set associated to a domain of �nite type D in

a vertical plane (P, π). Whenever P is an a�ne plane and π is an a�ne function, its role is to

measure the non-convexity of D in the direction of the �bers of π.

De�nition 2.13. Let (P, π) be a vertical plane and D ⊂ P be a domain of �nite type. The

Poincaré�Reeb set of D is the quotient D̃ := D/∼D, seen as a subset of the D-collapse P̃ of P in

the sense of De�nition 2.11.

The Poincaré�Reeb set from De�nition 2.13 has a canonical structure of graph embedded in the

vertical plane (P̃, π̃), a fact which may be proved similarly to [9, Theorem 4.6]. Let us explain

�rst how to get the vertices and the edges of D̃.
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De�nition 2.14. Let D be a domain of �nite type in a vertical plane (P, π), and let C be its

boundary. A vertex of the Poincaré�Reeb set D̃ is an element of ρD (Σtop(C)). A critical segment

of D is a connected component of a �ber of π|D containing at least one element of Σtop(C). The
bands of D are the closures of the connected components of the complement in D of the union

of critical segments. An edge of D̃ is the image ρD(R) of a band R of D (see Figure 8).

Figure 8. Construction of a Poincaré�Reeb set. There are three bands, delim-

ited by four critical segments (three of them are reduced to points). The interior

of each edge of the graph is drawn in the same color as the corresponding band.

Each critical segment is either an exterior topological critical point in the sense of De�nition 2.9

or a non-trivial segment containing a �nite number of interior topological critical points in its

interior (see Figure 9 for an example with two such points).

Figure 9. A critical segment containing two interior topological critical points.

Next de�nition, motivated by Proposition 2.16 below, introduces a special type of subgraphs of

vertical planes:

De�nition 2.15. Let (P, π) be a vertical plane. A transversal graph in (P, π) is a closed subset

G of P partitioned into �nitely many points called vertices and subsets homeomorphic to open

segments of R called open edges, such that:

(1) each edge, that is, the closure E of an open edge E, is homeomorphic to a closed segment

of R and E \ E consists of 0, 1 or 2 vertices;

(2) the edges are topologically transversal to the vertical lines, that is, the restriction of π to

each edge is a homeomorphism onto its image in R;
(3) the restriction π|G : G→ R is proper.

A transversal graph is called generic if its vertices are of valency 1 or 3 and if distinct vertices

lie on distinct vertical lines.
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Any transversal graph is homeomorphic to the complement of a subset of the set of vertices of

valency 1 inside a usual �nite (compact) graph. This is due to the fact that some of its edges

may be unbounded, in either one or both directions. Condition (3) from De�nition 2.15 avoids

G having unbounded edges which are asymptotic to a vertical line of π. Note that we allow G

to be disconnected and the set of vertices to be empty. In this last case, G is a �nite union of

pairwise disjoint open edges, each of them being sent by π homeomorphically onto R.
Here is the announced description of the canonical graph structure of the Poincaré�Reeb sets of

domains of �nite type in vertical planes:

Proposition 2.16. Let D be a domain of �nite type in a vertical plane (P, π). Then each edge

of the Poincaré�Reeb set D̃ in the sense of De�nition 2.14 is homeomorphic to a closed segment

of R. Endowed with its vertices and edges, D̃ is a transversal graph in (P̃, π̃), without vertices of
valency 2.

The proof is straightforward using Proposition 2.10. For an example, see the graph of Figure 8.

Proposition 2.16 allows to give the following de�nition:

De�nition 2.17. Let D be a domain of �nite type in a vertical plane (P, π). Its Poincaré�Reeb

graph is the Poincaré�Reeb set D̃ seen as a transversal graph in the D-collapse (P̃, π̃) of P in the

sense of De�nition 2.11, when one endows it with vertices and edges in the sense of De�nition

2.14.

The next result explains in which case the Poincaré�Reeb graph of a domain of �nite type is

generic in the sense of De�nition 2.15:

Proposition 2.18. Let D be a domain of �nite type in a vertical plane (P, π). Denote by C its

boundary. Then the Poincaré�Reeb graph D̃ is a generic transversal graph in (P̃, π̃) if and only

if no two topological critical points of C lie on the same vertical line.

Proof. This follows from De�nition 2.15, De�nition 2.9 and Proposition 2.10 (3). Vertices of

valency 1 of the Poincaré�Reeb graph correspond to exterior topological critical points, whereas

vertices of valency 3 correspond to interior topological critical points. □

This proposition motivates:

De�nition 2.19. A domain of �nite type in a vertical plane is called generic if no two topological

critical points of its boundary lie on the same vertical line.

Below we will de�ne a related notion of generic direction with respect to an algebraic domain

(see De�nition 2.21 and Remark 2.22).

2.5. Algebraic domains of �nite type

Let us consider algebraic domains in the canonical a�ne vertical plane (R2, x) (see De�nition

2.3), in the sense of De�nition 2.1. Not all of them are domains of �nite type. For instance,

the closed half-planes or the surface bounded by the hyperbolas (xy = 1) and (xy = −1) are

not of �nite type, because the restriction of the projection x to the domain is not proper. Next

proposition shows that this properness characterizes the algebraic domains which are of �nite

type, and that it may be checked simply:

Proposition 2.20. Let (P, π) be an a�ne vertical plane and let D be an algebraic domain in it.

Then the following conditions are equivalent:

(1) D is a domain of �nite type.

(2) The restriction π|D : D → R is proper.
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(3) One �ber of π|D : D → R is compact and the boundary C of D does not contain vertical

lines and does not possess vertical asymptotes.

Proof. Let us prove �rst the implication (2) ⇒ (1). It is enough to show that Σtop(C) is a �nite

set. The properness of π|D shows that C contains no vertical line. The set of topological critical

points being included in the set Σdi�(C) of di�erentiable critical points of π|C , it is enough to

prove that this last set is �nite. Consider a connected component Ci of C and its Zariski closure

Ci in P. Let Pπ(Ci) be its polar curve relative to π (see [7, De�nition 2.43]). It is again an

algebraic curve in P, of degree smaller than the irreducible algebraic curve Ci. Therefore, the set
Ci ∩ Pπ(Ci) is �nite, by Bézout's theorem. But this set contains Ci ∩ Σdi�(C), which shows that

π|C has a �nite number of di�erentiable critical points on each connected component Ci. As C
has a �nite number of such components, we get that Σdi�(C) is indeed �nite.

Let us prove now that (1) ⇒ (3). Since C ⊂ D, we have by the properness condition of De�nition

2.7 (1) that C does not contain vertical lines. Moreover, if the boundary C of D possessed a

vertical asymptote, then we would obtain a contradiction with De�nition 2.7 (1). Finally, since

π|D is proper, each of its �bers is compact.

Finally we prove that (3) ⇒ (2). Since the boundary C of D does not contain vertical lines

and does not possess vertical asymptotes, the restriction π|C is proper. Moreover, it has a �nite

number of di�erentiable critical points, as the above proof of this fact used only the absence of

vertical lines among the connected components of C. We argue now similarly to our proof of

Proposition 2.10 (3), by subdividing R using the points of the topological critical image Σtop(C).
This set is �nite, therefore R gets subdivided into �nitely many closed intervals. Above each one

of them, C consists of �nitely many transversal arcs. If one �ber of π|D above such an interval Ij
is compact, it means that π−1

|D (Ij) is a �nite union of bands bounded by pairs of such transversal

arcs and compact vertical segments, therefore π|D is proper above Ij . In particular, its �bers

above the extremities of Ij are also compact. In this way we show by progressive propagation

from each interval with a compact �ber to its neighbors, that π|D is proper above each interval

of the subdivision of R using Σtop(C). This implies the properness of π|D . □

Let us explain now a notion of genericity of an a�ne function on an a�ne plane relative to an

algebraic domain:

De�nition 2.21. Let D be an algebraic domain in an a�ne vertical plane (P, π), and let C be

its boundary. The projection π is called generic with respect to D if C does not contain vertical

lines and does not possess vertical asymptotes, vertical in�ectional tangent lines and vertical

multitangent lines (that is, vertical lines tangent to C at least at two points, or to a point of

multiplicity greater than two).

Remark 2.22. Let D be an algebraic domain in an a�ne plane P. Except for a �nite number of

directions of their �bers, all a�ne projections are generic with respect to D (see [10, Theorem

2.13]). Note that the a�ne projection π is generic with respect to D if and only if the restriction

of π to C is a proper excellent Morse function, i.e. all the critical points of π|C are of Morse

type and are situated on di�erent level sets of π|C . Note also that if the algebraic domain D is

moreover of �nite type and π is generic with respect to it in the sense of De�nition 2.21, then D
is generic in the sense of De�nition 2.19.

Proposition 2.23. Let D be an algebraic domain of �nite type in an a�ne vertical plane (P, π).
Assume that π is generic with respect to D in the sense of De�nition 2.21. Then its Poincaré�

Reeb graph is generic in the sense of De�nition 2.15.

Proof. This is a consequence of Proposition 2.18 and Remark 2.22, since by De�nition 2.4, the

topological critical points of C are among the di�erential critical points of the vertical projection

π|C . □
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2.6. The invariance of the Euler characteristic

In this section we consider only compact domains of �nite type. This implies that their boundaries

are also compact (see Figure 1 for an example). Next result implies that the Betti numbers of

the domain and of its Poincaré�Reeb graph are the same:

Proposition 2.24. Let D be a compact domain of �nite type in a vertical plane. Then D and

its Poincaré�Reeb graph D̃ have the same number of connected components and the same Euler

characteristic.

Proof. Let us �rst prove the statement about connected components. The collapsing map ρD of

De�nition 2.11 being continuous, each connected component of D is sent by ρD to a connected

subset of D̃. Those subsets are compact, as images of compact sets by a continuous map. They

are moreover pairwise disjoint, by De�nition 2.11 of the vertical equivalence relation relative to

D. Therefore, they are precisely the connected components of D̃, which shows that ρD establishes

a bijection between the connected components of D and D̃.

We prove now the statement about Euler characteristics. We use integration with respect to the

Euler characteristic, introduced by Viro in [12, Sections 2 and 3] (see also [1, page 57], [2, Section

2.1] and [13, Section 7.3]). In the previous references this integration theory is explained in the

semi-algebraic category, but its properties extend to all topologically tame maps, as is the map

ρD|D : D → D̃ used below. The idea of the proof is the same as when D is a disk, a case treated

by the last author in [7, Proposition 2.36], [9, Proposition 4.21]. We consider the pushforward

(ρD)∗ 1D of the identity function 1D on the topological disk D. It is a function de�ned on the

Poincaré�Reeb graph D̃. By a fundamental property of push-forwards, the integrals of both

functions with respect to the Euler characteristic are the same:
∫
D 1D dχ =

∫
D̃ (ρD)∗ 1D dχ. As

the �bers of ρD|D : D → D̃ are compact segments, their Euler characteristics are all equal to

1, therefore (ρD)∗ 1D = 1D̃. The previous equality of integrals becomes
∫
D 1D dχ =

∫
D̃ 1D̃ dχ,

which means exactly that χ(D) = χ(D̃). □

Note that in Section 5 we will focus on the topology of the boundary curve C of D, in terms of

Betti numbers (see Proposition 5.1). The case where D is a disk was considered by the third

author in her study of asymptotic shapes of level curves of polynomial functions f(x, y) ∈ R[x, y]
near a local extremum (see [7, 9]).

A direct consequence of Proposition 2.24 is:

Proposition 2.25. If D ⊂ (P, π) is (homeomorphic to) a disk, then the Poincaré�Reeb graph D̃
of D is a tree.

Proof. Proposition 2.24 implies that D̃ is connected and that χ(D̃) = 1. But these two facts

characterize the trees among the �nite graphs. □

If the disk D ⊂ (P, π) is an algebraic domain in a vertical a�ne plane and the projection π is

generic with respect to D in the sense of De�nition 2.21, then Proposition 2.23 implies that the

Poincaré�Reeb graph D̃ is a complete binary tree: each vertex is either of valency 3 (we call it

then interior) or of valency 1 (we call it then exterior).
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Figure 10. The Poincaré�Reeb graph of a disk relative to a generic projection

is a complete binary tree.

2.7. Poincaré�Reeb graphs in the source

De�nition 2.17 of the Poincaré�Reeb graph D̃ of a �nite type domain D in a vertical plane (P, π)
is canonical. However, it yields a graph embedded in a new vertical plane P̃, which cannot be

identi�ed canonically to the starting one. When the Poincaré�Reeb graph is generic in the sense

of De�nition 2.15, it is possible to lift it to the starting plane.

Proposition 2.26. Let D be a �nite type domain in a vertical plane (P, π). If the Poincaré�Reeb
graph D̃ is generic, then the map (ρD)|D : D → D̃ admits a section, which is well de�ned up to

isotopies stabilizing each vertical line.

Proof. The genericity assumption means that above each vertex of D̃ there is a unique topological

critical point of C. This determines the section of (ρD)|D unambiguously on the vertex set of D̃.

The preimage of an edge E of D̃ is a band (see De�nition 2.14), which is a trivializable �bration

with compact segments as �bers over the interior of E. Therefore, one may extend continuously

the section from its boundary to the interior of E in a canonical way up to isotopies stabilizing

each vertical line (see Figure 11). □

P Q

Figure 11. Decomposition in bands and choices of paths.

Note that without the genericity assumption, the conclusion of Proposition 2.26 is not necessarily

true, as may be checked on Figure 9.

De�nition 2.27. Let D be a domain of �nite type in a vertical plane (P, π) with generic Poincaré�

Reeb graph D̃. Then any section of (ρD)|D : D → D̃ is called a Poincaré�Reeb graph in the source

of D. By contrast, the graph D̃ is called the Poincaré�Reeb graph in the target.

Using the notion of vertical equivalence de�ned in Subsection 2.8 below, one may show that any

Poincaré�Reeb graph ˜̃D in the source and the Poincaré�Reeb graph D̃ in the target are vertically

isomorphic: D̃ ≈v
˜̃D. As explained above, an advantage of the latter construction is that the

Poincaré�Reeb graph in the source lives inside the same plane as the generic �nite type domain

D.
Another advantage is that one may de�ne Poincaré�Reeb graphs in the source even for algebraic

domains which are not of �nite type, but for which the a�ne projection π is assumed to be

generic in the sense of De�nition 2.21. In those cases the D-collapse of the starting a�ne plane

P is not any more homeomorphic to R2.
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2.8. Vertical equivalence

The following de�nition of vertical equivalence is intended to capture the underlying combinatorial

structure of subsets of vertical planes. That is, we consider that two vertically equivalent such

subsets have the same combinatorial type.

De�nition 2.28. Let X and X ′ be subsets of the vertical planes (P, π) and (P ′, π′) respectively.

We say that X and X ′ are vertically equivalent, denoted by X ≈v X
′, if there exist orientation

preserving homeomorphisms Φ : P → P ′ and ψ : R → R such that Φ(X) = X ′ and the following

diagram is commutative:

P P ′

R R

π

Φ

π′

ψ

In the sequel we will apply the previous de�nition to situations whenX andX ′ are either domains

of �nite type in the sense of De�nition 2.7 or transversal graphs in the sense of De�nition 2.15.

Proposition 2.29. Let D and D′ be compact connected domains of �nite type in vertical planes,

with Poincaré�Reeb graphs G and G′. Assume that both are generic in the sense of De�nition

2.19. Then:

D ≈v D′ ⇐⇒ G ≈v G
′.

Before giving the proof of Proposition 2.29, let us make some remarks:

� Denote C = ∂D and C′ = ∂D′. We have Φ(C) = C′.

� Φ sends the topological critical points {Pi} of C bijectively to the topological critical

points {P ′
i} of C′. In fact, such a critical point may be geometrically characterized by

the local behavior of D relative to the vertical line through this point. A point P is a

topological critical point of π|C , if and only if the intersection of D with the vertical line ℓ

through P is a point in a neighborhood of P , or a segment such that P is in the interior

of the segment. The homeomorphism Φ sends the vertical line ℓ to a vertical line ℓ′ and

D to D′, hence P ′ = Φ(P ) is a critical point of π|C′ .

� The equivalence preserves the π-order of the critical points: if D ≈v D′, and if Pi, Pj are

critical points of π|C with π(Pi) < π(Pj) then the corresponding critical points of π|C′ ,

P ′
i := Φ(Pi), P

′
j := Φ(Pj) verify π

′(P ′
i ) < π′(P ′

j). This comes from the assumption that

the homeomorphisms Φ and ψ involved in De�nition 2.28 are orientation preserving.

Example 2.30. Consider the canonical a�ne vertical plane (R2, x) in the sense of De�nition

2.3. Then the vertical equivalence preserves the x-order, that is to say, if x(Pi) < x(Pj) then

x(P ′
i ) < x(P ′

j). Notice that the y-order of the critical points may not be preserved. However Φ

preserves the orientation on each vertical line, i.e. y 7→ Φ(x0, y) is a strictly increasing function.

Example 2.31. Consider again the canonical a�ne vertical plane (R2, x) and a generic algebraic

domain D in it, homeomorphic to a disc. Denote C = ∂D. It is homeomorphic to a circle. Then

the set of critical points of π|C (which are the same as the topological critical points, by the

genericity assumption) yields a permutation. To explain that, we will de�ne two total orders

on the set of critical points. The �rst order enumerates {Pi} in a circular manner following

C, obtained by following the curve, starting with the point with the smallest x coordinate,

the curve being oriented as the boundary of D. The second order is obtained by ordering the

abscissas x(Pi) using the standard order relation on R. Now, as explained by Knuth (see [4,

page 17], [10, De�nition 4.21], [8, Section 1]), two total order relations on a �nite set give rise

to a permutation σ: in our case, σ(i) is the rank of x(Pi) in the ordered list of all abscissa.

The vertical equivalence preserves the permutation: if D ≈v D′ then σ = σ′. However, the
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reverse implication could be false, as shown in the picture below, which shows two generic real

algebraic domains homeomorphic to discs with the same permutation ( 1 2 3 4 5 6
1 5 3 6 2 4 ), but which are

not vertically equivalent, as may be seen by considering their Poincaré-Reeb trees.

5

6

1 2

3

4
5

6

1

2

3

4

Figure 12. Two non-vertically equivalent real algebraic domains with the same permutation.

Example 2.31 shows that the permutations are not complete invariants of generic domains of

�nite type homeomorphic to disks, under vertical equivalence. However, by Proposition 2.29,

the Poincaré�Reeb graphs are complete invariants of all kinds of generic domains of �nite type.

Proof of Proposition 2.29.

� ⇒. Suppose D ≈v D′ and let Φ : P → P ′ be a homeomorphism realizing this equivalence

through a commutative diagram

P P ′

R R

π

Φ

π′

ψ

By de�nition, Φ preserves the vertical foliations, hence is compatible with the vertical

equivalence relations ∼D and ∼D′ of De�nition 2.11. Hence it induces a homeomorphism

Φ̃ : P̃ → P̃ ′ from the D-collapse of P to the D′-collapse of P ′, sending G = D/∼ to

G′ = D′/∼. This homeomorphism gets naturally included in a commutative diagram

P̃ P̃ ′

R R

π̃

Φ̃

π̃′

ψ

Therefore, by De�nition 2.28, G ≈v G
′.

� ⇐. The keypoint is to reconstruct the topology of a generic domain of �nite type D
homeomorphic to a disk (and of its boundary C) from its Poincaré�Reeb graph G. To this

end, one may construct a kind of tubular neighborhood D of G, obtained by thickening

it using vertical segments (see Figure 13). Then D is vertically equivalent to D.
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Figure 13. Thickening in the neighborhood of an exterior vertex (left) and of

an interior vertex (right).

Now suppose that G ≈v G
′ and let Φ̃ : P̃ → P̃ ′ be a homeomorphism inducing this

equivalence. This homeomorphism induces also a vertical equivalence of convenient such

thickenings, hence yields the equivalence D ≈v D′.

□

The combinatorial types of generic transversal graphs can be realized by special types of graphs

with smooth edges in the canonical a�ne vertical plane (R2, x : R2 → R):

Proposition 2.32. Any generic transversal graph in a vertical plane is vertically equivalent to

a graph in the canonical a�ne vertical plane, whose edges are moreover smooth and smoothly

transversal to the vertical lines.

We leave the proof of this proposition to the reader.

Remark 2.33. We said at the beginning of this subsection that we introduced vertical equivalence

as a way to capture the combinatorial aspects of subsets of vertical planes. It is easy to construct

a combinatorial object (that is, a structure on a �nite set) which encodes the combinatorial type

of a generic transversal graph. For instance, given such a graph G, one may number its vertices

from 1 to n in the order of the values of the vertical projection π. Then, for each edge α of

G, one may remember both its end points a < b and, for each number c ∈ {a + 1, . . . , b − 1},
whether α passes below or above the vertex numbered c.

3. Algebraic realization in the compact connected case

In this section we give the main result of the paper, Theorem 3.5: given a compact connected

generic transversal graph G in a vertical plane (see De�nition 2.15), we prove that there exists

a compact algebraic domain in the canonical a�ne vertical plane whose Poincaré�Reeb graph is

vertically equivalent to G. We will prove a variant of Theorem 3.5 for non-compact graphs in

the next section (Theorem 4.6).

Using the canonical orientation of the target R of the vertical projection, one may distinguish

two kinds of interior and exterior vertices of the graph G (see Figure 14).

Figure 14. The two kinds of interior vertices (on the left) and of exterior vertices

(on the right).
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Our strategy of proof of Theorem 3.5 is as follows:

� we realize the generic transversal graph G as a Poincaré�Reeb graph of a �nite type

domain de�ned by a smooth function;

� we present a Weierstrass-type theorem that approximates any smooth function by a

polynomial function;

� we adapt this Weierstrass-type theorem in order to control vertical tangents, and we

realize G as the Poincaré�Reeb graph of a generic �nite type algebraic domain.

3.1. Smooth realization

First, we construct a smooth function f that realizes a given generic transversal graph.

Proposition 3.1. Let G be a compact connected generic transversal graph. There exists a C∞

function f : R2 → R such that the curve C = (f = 0) does not contain critical points of f and

is the boundary of a domain of �nite type whose Poincaré�Reeb graph in the canonical vertical

plane (R2, x) is vertically equivalent to G.

gluing vertical tangency

Figure 15. A generic compact transversal graph (left) and a local smooth real-

ization (right).

Proof. The idea is to construct �rst the curve C, then the function f . We construct C by

interpolating between local constructions in the neighborhoods of the vertices of G (see Figure

15). Let us be more explicit. We may assume, up to performing a vertical equivalence, that G

is a graph with smooth compact edges in the canonical a�ne vertical plane (R2, x), whose edges

are moreover smoothly transversal to the verticals (see Proposition 2.32). Let ε > 0 be �xed.

Then, one may construct C verifying the following properties:

� C is compact;

� C ⊂ N(G, ε): the curve is contained in the ε-neighborhood of G;

� C has only one vertical tangent associated to each vertex of G;

� all these tangents are ordered in the same way as the vertices of G.

Note that this last condition is automatic once ε is chosen less than half the minimal absolute

value |x(Pi)− x(Pj)|, where Pi and Pj are distinct vertices of G.
Once C is �xed, one may construct f by following the steps:

� Bicolor the complement R2\C of C using the numbers±1, such that neighboring connected

components have distinct associated numbers. Denote by σ : R2 \ C → R the resulting

function.

� Choose pairwise distinct annular neighborhoods Ni of the connected components Ci of
C, and di�eomorphisms ϕi : Ni ≃ Ci × (−1, 1) such that p2 ◦ ϕi (the composition of the

second projection p2 : Ci × (−1, 1) → (−1, 1) and of ϕi) has on the complement of Ci the
same sign as σ.
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� For each connected component Sj of R2 \ C, consider the open set Uj ⊂ Sj obtained as

the complement of the union of annuli of the form ϕ−1
i (Ci × [−1/2, 1/2]). Then consider

the restriction σj : Uj → R of σ to Uj .

� Fix a smooth partition of unity on R subordinate to the locally �nite open covering

consisting of the annuli Ni and the sets Uj . Then glue the smooth functions p2 ◦ ϕi :
Ni → R and σj : Uj → R using it.

� The resulting function f satis�es the desired properties.

□

3.2. A Weierstrass-type approximation theorem

Let us �rst recall the following classical result:

Theorem 3.2 (Stone-Weierstrass theorem, [11]). Let X be a compact Hausdor� space. Let C(X)

be the Banach R-algebra of continuous functions from X to R endowed with the norm ∥ · ∥∞. Let

A ⊂ C(X) be such that:

� A is a sub-algebra of C(X),

� A separates points (that is, for each x, y ∈ X with x ̸= y there exists f ∈ A such that

f(x) ̸= f(y)),

� for each x ∈ X, there exists f ∈ A such that f(x) ̸= 0.

Then A is dense in C(X) relative to the norm ∥ · ∥∞.

We will only use the previous theorem through the following corollary:

Corollary 3.3. Let f : R2 → R be a continuous map and a, b ∈ R, a < b. For each ε > 0, there

exists a polynomial p ∈ R[x, y] such that :

∀(x, y) ∈ [a, b]× [a, b]
∣∣f(x, y)− p(x, y)

∣∣ < ε

Proof. We apply Theorem 3.2 with X = [a, b]× [a, b], A = R[x, y]. This set A satis�es the three

conditions of Theorem 3.2 (the last one because 1X ∈ A), therefore A is dense in C(X), which

implies that f can indeed be uniformly arbitrarily well approximated on X by polynomials. □

Is Corollary 3.3 su�cient to answer the realization question? No! Indeed, even if it provides a

polynomial p(x, y) such that (p(x, y) = 0) lies in a close neighborhood of (f(x, y) = 0), we have

no control on the vertical tangents of the algebraic curve (p = 0), whose Poincaré�Reeb graph

can therefore be more complicated than the Poincaré�Reeb graph of (f = 0). In the sequel we

construct a polynomial p by keeping at the same time a control on the vertical tangents of a

suitable level curve of it.

3.3. Algebraic realization

Proposition 3.4. Let f : R2 → R be a C3 function such that C = (f = 0) is a curve which does

not contain critical points of f , which has only simple vertical tangents, and is included in the

interior of a compact subset K of R2. For each δ > 0, there exists a polynomial p ∈ R[x, y] such
that (see Figure 16):

� (p = 0) ∩K ⊂ N(f = 0, δ),

� for each point P0 ∈ (f = 0) where (f = 0) has a vertical tangent, there exists a unique

Q0 ∈ (p = 0) in the disc N(P0, δ) centered at P0 and of radius δ such that (p = 0) has

also a vertical tangency at Q0,

� (p = 0) ∩K has no vertical tangent except at the former points.
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P0
Q0

(f = 0)

(p = 0)

N(f = 0, δ)

Figure 16. Algebraic realization.

We prove this proposition in Subsection 3.4 below.

By taking the numbers ε > 0 and δ > 0 appearing in Propositions 3.1 and 3.4 su�ciently small,

we get:

Theorem 3.5. Any compact connected generic transversal graph can be realized as the Poincaré�

Reeb graph of a connected algebraic domain of �nite type.

Proof of the theorem. Starting with a compact connected transversal generic graph G, it can be

realized by a smooth function f (Proposition 3.1), which in turn can be replaced by a polynomial

map p (Proposition 3.4). □

3.4. Proof of Proposition 3.4

Our proof is inspired by the answer [3] of Nate Eldredge to a question asked on StackExchange.

Compact support. Let M > 0 such that (f = 0) ⊂ [−(M − 1),M − 1]2 (remember that

(f = 0) is assumed to be included in a compact set). We replace the function f by a function g

with compact support. More precisely, let g : R2 → R be a function such that:

� g is C3,

� f = g on [−(M − 1),M − 1]2,

� g = 0 outside (−M,M)2,

� g does not vanish in the intermediate zone (hatched area below).

x

y

(f = 0)

M − 1

M

Figure 17. Compact support of g.

Such a function may be constructed using an adequate partition of unity.
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De�nition of p.

� Let us �x ε > 0.

� By Corollary 3.3 applied to the function ∂x∂y∂yg and to (a, b) = (−M,M), there exists

a polynomial p0 ∈ R[x, y] such that:

∀(x, y) ∈ [−M,M ]2 |p0(x, y)− ∂x∂y∂yg(x, y)| < ε.

� Now our polynomial p ∈ R[x, y] is de�ned by a triple integration :

p(x, y) =

∫ x

−M

∫ y

−M

∫ y

−M
p0(u, v) dv dv du.

Approximation of g and f . The polynomial p and its partial derivatives are good approxima-

tions on [−M,M ]2 of g and its partial derivatives (and then also of f and its partial derivatives):

Lemma 3.6. For all (x, y) ∈ [−M,M ]2:

|p(x, y)− g(x, y)| ⩽ (2M)3ε,

|∂yp(x, y)− ∂yg(x, y)| ⩽ (2M)2ε, |∂xp(x, y)− ∂xg(x, y)| ⩽ (2M)2ε,∣∣∂y2p(x, y)− ∂y2g(x, y)
∣∣ ⩽ 2Mε.

Proof. We start by proving the last inequality.

By Fubini theorem:

∂y2p(x, y) =

∫ x

−M
p0(u, y) du.

Therefore:∣∣∂y2p(x, y)− ∂y2g(x, y)
∣∣ = ∣∣∣∣∫ x

−M

(
p0(u, y)− ∂x∂y2g(u, y)

)
du

∣∣∣∣ ⩽ ∣∣∣∣∫ x

−M
ε du

∣∣∣∣ ⩽ 2Mε.

The �rst equality is a consequence of the fact that:∫ x

−M
∂x∂y2g(u, y) du = ∂y2g(x, y)− c(y)

where c(y) = ∂y2g(−M,y). As g vanishes outside (−M,M)2, for those points we have ∂y2g(x, y) =

0 so that c(y) = 0. The inequality following it results from the de�nition of the polynomial p0.

By successive integrations we prove the other inequalities. □

Inside the square [−M,M ]2 the curve (p = 0) de�ned for a su�ciently small ε is in a neighborhood

of (f = 0). However, remark that (p = 0) can also vanish outside the square [−M,M ]2.

The curve (p = 0) inside the square.
Let us explain the structure of the curve (p = 0) around a point P0 ∈ (f = 0) where the tangent

is not vertical (recall that f = g inside the square [−(M − 1),M − 1]2).

� Fix δ > 0. Let B(P0, δ) be a neighborhood of P0. On this neighborhood f takes positive

and negative values.

� Let η > 0 and Q1, Q2 ∈ B(P0, δ) such that f(Q1) > η and f(Q2) < −η.
� We choose the ε of Lemma 3.6 such that (2M)3ε < η/2.

� p(Q1) > f(Q1) − (2M)3ε > η/2 > 0; a similar computation gives p(Q2) < 0, hence p

vanishes at a point Q0 ∈ [Q1Q2] ⊂ B(P0, δ).

� Because we supposed ∂yf ̸= 0 in B(P0, δ), we also have ∂yp ̸= 0. Hence (p = 0) is a

smooth simple curve in B(P0, δ) with no vertical tangent.
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B(P0, δ)

P0

Q1

Q2

Q0
(p = 0)

(f = 0)

Figure 18. Existence of the curve (p = 0).

Notice that the construction of (p = 0) in B(P0, δ) depends on ε, whose choice depends on the

point P0. To get a common choice of ε, we �rst cover the compact curve (f = 0) by a �nite

number of balls B(P0, δ) and take the minimum of the ε above.

Vertical tangency.

� Let P0 = (x0, y0) be a point with a simple vertical tangent of (f = 0), that is to say:

∂yf(x0, y0) = 0 ∂xf(x0, y0) ̸= 0 ∂y2f(x0, y0) ̸= 0

� For similar reasons as before, (p = 0) is a non-empty smooth curve passing near P0.

� In the following we may suppose that the curve (f = 0) is locally at the left of its vertical

tangent, that is to say:

∂xf(x0, y0)× ∂y2f(x0, y0) > 0

An example of this behavior is given by f(x, y) := x+ y2 at (0, 0).

B(P0, δ)

P0
Q0

(f = 0)
(p = 0)

Figure 19. Vertical tangent.

� Fix δ > 0. Let B(P0, δ) be a neighborhood of P0.

� ∂yp ∼ ∂yf . As ∂yf vanishes at the point P0 of (f = 0), then ∂yf takes positive and

negative values near this point. Let η > 0, and Q1 ∈ (f = 0) such that ∂yf(Q1) > η.

For a su�ciently small ε, there exists R1 ∈ (p = 0) such that ∂yf(R1) >
2
3η. Therefore

∂yp(R1) >
1
3η > 0. For a similar reason there exists R2 ∈ (p = 0) such that ∂yp(R2) < 0.

Then there exists Q0 ∈ (p = 0) ∩B(P0, δ) such that ∂yp(Q0) = 0.

� ∂xp ∼ ∂xf . As ∂xf(P0) ̸= 0, one has also ∂xp(Q0) ̸= 0, thus p has a vertical tangent at

Q0.

� ∂y2p ∼ ∂y2f and they do not vanish near P0 and Q0, therefore the vertical tangent at Q0

for (p = 0) is simple and has the same type as the vertical tangent at P0 for (f = 0).

� Moreover as ∂y2p ̸= 0 on (p = 0) ∩ B(P0, δ), thus ∂yp vanishes only once, hence there is

only one vertical tangent in this neighborhood.
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4. Algebraic realization in the non-compact and connected case

4.1. Domains of weakly �nite type in vertical planes

We consider an algebraic domain D ⊆ R2 in the sense of De�nition 2.1, whose boundary C := ∂D
is a connected but non-compact curve. This curve C is homeomorphic to a line and has two

branches at in�nity (the germs at in�nity of the two connected components of C \ K, where

K ⊂ C is a non-empty compact arc). Let us suppose that these branches are in generic position

w.r.t. the vertical direction: none of them has a vertical asymptote. This leads us to De�nition

4.1 below, which represents a generalization of the notion of domain of �nite type (see De�nition

2.7), since we only ask π|C : C → R to be proper, allowing π|D : D → R not to be so. In turn,

the genericity notion is an analog of that introduced in De�nition 2.19.

De�nition 4.1. Let (P, π) be a vertical plane. Let D ⊂ P be a closed subset homeomorphic to

a surface with non-empty boundary. Denote by C its boundary. We say that D is a domain of

weakly �nite type in (P, π) if:

(1) the restriction π|C : C → R is proper;

(2) the topological critical set Σtop(C) is �nite.

Such a domain is called generic if no two topological critical points of C lie on the same vertical

line. A Poincaré�Reeb graph of a generic domain of weakly �nite type is one of its Poincaré�Reeb

graphs in the source in the sense of Subsection 2.7.

For instance, the closed upper half-plane H in (R2, x) is a generic domain of weakly �nite type

(for which Σtop(C) = ∅). Its Poincaré-Reeb graphs are the sections of the restriction x : H → R
of the vertical projection.

4.2. The combinatorics of non-compact Poincaré�Reeb graphs

Let D be a domain of weakly �nite type in a vertical plane (P, π). When C is homeomorphic to

a line, we distinguish three cases, depending on the position of D and of the branches of C. We

enrich the Poincaré�Reeb graph, by adding arrowhead vertices representing directions of escape

towards in�nity. Moreover, the unbounded edges are decorated with feathers oriented upward

or downward, to indicate the unbounded vertical intervals contained in the domain.

Case A. One arrow.

G̊

Figure 20. Case A.

In case A, the two branches of C are going in the same direction (to the right or to the left, as

de�ned by the orientations of P and the target line R of π), D being in between. Then we get a

Poincaré�Reeb graph with one arrow (and no feathers).

Case B. Two arrows.
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G̊

Figure 21. Case B.

In case B, the two branches have opposite directions. Then we have a Poincaré�Reeb graph with

two arrows, each arrow-headed edge being decorated with feathers (above or below), indicating

the non-compact vertical intervals of type [0,+∞[ or ]−∞, 0] contained in the domain bounded

by that edge.

Case C. Three arrows.

G̊

Figure 22. Case C.

In case C, where the two branches are going to the same direction but D is in the �exterior�, we

have a graph with three arrows: two arrows with simple feathers (for the vertical intervals of

type [0,+∞[ or ]−∞, 0]) and one arrow with double feathers (for the vertical intervals of type

]−∞,+∞[).

Remark 4.2.

� We can avoid the contraction of non-compact vertical intervals in the construction of the

Poincaré�Reeb graph in case B and case C, in order to still have a graph G naturally

embedded in an a�ne plane. We �rst de�ne a subset H ⊂ R2 that contains C, whose
boundary ∂H = H+ ∪H− is the union of two curves homeomorphic to R, transverse to
the vertical foliation (one above C, one below C).
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C

D ∩H

H−

H+

We change De�nition 2.11, by contracting vertical intervals of D∩H (instead of vertical

intervals of D) : P ∼D Q if π(P ) = π(Q) := x0 and P and Q are on the same connected

component of D ∩H ∩ π−1(x0).

� The feather decoration on non-arrowheaded edges can be recovered from feathers at the

other arrows and are omitted.

� The cases A and C are complementary (or dual of each other). We can pass from one to

the other by considering C as the boundary of D or of R2 \ D.

� From this point of view, case B is its own complementary case. More on such comple-

mentarities will be said later (see Section 5).

Proposition 4.3. Let D be a simply connected generic domain of weakly �nite type in a vertical

plane. Then its Poincaré�Reeb graph is a generic transversal binary tree.

Proof. After applying a vertical equivalence in the sense of De�nition 2.28, we may assume that

D is embedded in the canonical vertical plane (R2, x).

Denote C := ∂D. The idea is to intersect C (and D) with a su�ciently big compact convex

topological disk K, to apply our previous construction for D ∩K, then to add suitable arrows.

In the �gure below, such a disk is represented as a Euclidean one, but one has to keep in mind that

its shape may be di�erent, for instance a rectangle, in order to achieve topological transversality

between its boundary and the curve C.

Figure 23. Cases A, B, C (from left to right). The �lled region is the compact

domain of �nite type D′ := D ∩K. A Poincaré�Reeb graph in the source is also

displayed. The Poincaré�Reeb graph of D is obtained by replacing each circled

vertex by an arrow.

First, notice that the case where C is compact is already known (see Propositions 2.18 and 2.25).

Assume therefore that C is a non-compact curve. Then π|C has a �nite number of topological

critical points. We consider a su�ciently large convex compact topological disk K that contains

all these critical points. Let D′ := D ∩K and C′ := ∂D′. We are then in the compact situation

studied before. By Proposition 2.25, the Poincaré�Reeb graph of D′ is a tree. We add arrows

(at each circled dot below) depending on each case. □
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We extend now the notion of vertical equivalence of transversal graphs from De�nition 2.28 to

enriched non-compact transversal graphs, requiring that arrowhead vertices are sent to arrowhead

vertices. Then we have the following generalization of Theorem 2.29, whose proof is similar:

Proposition 4.4. Let D, D′ be generic simply connected domains of weakly �nite type. Then:

D ≈v D′ ⇐⇒ G ≈v G
′.

4.3. Algebraic realization

We extend our realization thorem (Theorem 3.5) of generic transversal graphs as Poincaré�Reeb

graphs of algebraic domains to the simply connected but non-compact case. The idea is to use

the realization from the compact setting and consider the union with a line (or a parabola);

�nally, we take a neighboring curve.

Example 4.5. Here is an example, see Figure 24: starting from an ellipse (f = 0), we consider the

union with a line (g = 0), then the unbounded component of (fg = ε) is a non-compact curve

with two branches that have the shape of the ellipse on a large arc, if the sign of ε is conveniently

chosen.

(f = 0) (f = 0)

(g = 0)

(fg = ε)

(fg = −ε)

Figure 24. Adding two branches to an ellipse.

Theorem 4.6. Let G be a connected, non-compact, generic transversal tree in a vertical plane,

with at most three unbounded edges, not all on the same side (left or right), enriched with com-

patible arrows and feathers (like in cases A, B or C of Section 4.2). Let G′ be the compact tree

obtained from G, by replacing each arrow by a su�ciently long edge with a circle vertex at the

extremity. If G′ can be realized by a connected real algebraic curve, then G can be realized as the

Poincaré�Reeb graph of a simply connected, non-compact algebraic domain in (R2, x).

G G′

Figure 25. An example of a tree G (left) and its corresponding compact tree

G′ (right) after the edges ended with arrows have been replaced by long enough

edges having circle vertices.

Remark 4.7. Note that in this section we work under the additional hypothesis that the realiza-

tion from the compact setting is done by a connected real algebraic curve and not by a connected

component of a real algebraic curve as it was done in Theorem 3.5. We impose this hypothesis,

in order not to have di�culties when taking neighboring curves (see Remark 4.10).
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Proof. By hypothesis, there exists a connected real algebraic curve C : (f = 0), f ∈ R[x, y] such
that C realizes the newly obtained tree G′. In this proof we consider Poincaré�Reeb graphs in

the source in the sense of Subsection 2.7, so that the graph is situated in the same plane as the

connected real algebraic curve C : (f = 0).

The key idea of the proof is to choose appropriately a non-compact algebraic curve C′ : (g = 0),

g ∈ R[x, y] such that when we take a neighboring level of the product of the two polynomials,

say (fg = ε) for a su�ciently small ε > 0, we obtain the desired shape at in�nity described by

Case A, B or C. Note that the vertices of the Poincaré�Reeb graph are, by de�nition, transversal

intersection points between the polar curve and the level curve. So a small deformation of the

level curve will not change this property. Moreover, the neighboring curve must preserve the

total preorder between the vertices of the tree. Since there are �nitely many such vertices, we

can choose ε small enough to ensure this condition holds.

Let us give more details depending on the cases A, B or C.

Case A. Our goal is to realize the tree from Case A. Namely, we want to add two new non-

compact branches that are unbounded in the same direction (see Figure 26). In order to achieve

this, we shall consider the graph (g = 0) of a parabola that is tangent to the curve (f = 0) in

the rightmost vertex of G′. Next, consider the real bivariate function fg : R2 → R. The level

curve (fg = 0) is the union of C and C′. Finally, a neighboring curve (fg = ε) realizes the tree

G, for ε ̸= 0 su�ciently small.

G′

(f = 0)

(g = 0)

(fg = ε)

Figure 26. Zoom on the construction for case A.

Example 4.8. Here are the pictures of a graph G′ (Figure 27) and its realization (Figure 28).

Figure 27. Graph G to be realized.
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G′

(g = 0)
(fg = ε)

Figure 28. Case A: adding two new branches in the same direction.

Case B. In Case B, the goal is to add two new non-compact branches, on opposite sides. First,

note that in the presence of two such unbounded branches, the edges decorated by feathers (that

is, those edges corresponding to the contraction of unbounded segments) form a linear graph L.

The extremities of this linear subgraph are the arrowhead vertices of G which we replace by two

circular vertices to de�ne G′.

As before, by hypothesis we can consider a connected real algebraic plane curve C : (f = 0) that

realizes the graph G′. Consider a curve (g = 0), algebraic, homeomorphic to a line and situated

just below the graph G′. More precisely (g = 0) is situated in between the linear graph L of

G′ and the lower part of (f = 0) (see Figures 29 and 31). The connected component of the

neighboring curve (fg = ε) for a su�ciently small ε ̸= 0 will be the boundary of an algebraic

domain that realizes the given tree G.

G′

(f = 0)

(g = 0)

(fg = ε)

Figure 29. Zoom on the construction for case B.

Example 4.9. Here are the pictures of a graph G′ (Figure 30) and its realization (Figure 31).

Figure 30. Graph G to be realized.
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G′

(g = 0)

(fg = ε)

Figure 31. Case B: adding two new opposite branches.

Note that in the above construction there exist other connected components of (fg = ε), for

instance in between the curves (f = 0) and (g = 0), but this is allowed by De�nition 2.1: we

considered the algebraic domain D given by ∂D = C, where C ⊊ (fg = ε).

Case C. The domain considered in Case C is the complement of the algebraic domain, say DA,

that we constructed in Case A. Namely, the graph G from Case C is realized by the domain DC ,

that is the closure of R2 \ DA. Note that in this case the two domains have the same boundary:

∂DC = ∂DA = (fg = ε) and they are semialgebraic domains. □

Remark 4.10. Our construction for Theorem 4.6 needs the graph G′ to be realized by a connected

real algebraic curve. Theorem 3.5 only realizes G′ as one connected component C1 of a real

algebraic plane curve C de�ned by (f = 0); this is not su�cient for our construction. For

instance the oval C1 may be nested inside an oval C2 ⊂ C; the curve (fg = ε) of the proof of

Theorem 4.6 would no longer satisfy the requested conclusion.

G′

C1

C2 (g = 0)

(fg = ε)

Figure 32. Construction that does not satisfy the desired conclusion.

5. General domains of weakly finite type

We consider the case of D being any real algebraic domain. Each connected component of

C = ∂D is either an oval (a component homeomorphic to a circle) or a line (in fact a component

homeomorphic to a line). An essential question in plane real algebraic geometry is to study the

relative position of these components.

5.1. Combinatorics

Let (P, π) be a vertical plane and a generic domain D ⊂ P of weakly �nite type. The next result

shows that the Poincaré�Reeb graph of D allows to recover the numbers of lines and ovals of

C = ∂D.

Proposition 5.1.

� The number of lines in C is:

#{arrows without feathers}+ 1

2
#{arrows with simple feathers}.
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� The number of ovals in C is:

b0(G) + b1(G)− c

where b0(G) is the number of connected components of G, b1(G) is the number of indepen-

dent cycles in G and c is the number of connected components of G having an arrowhead

vertex.

Example 5.2. Let us consider Figure 33. One arrowhead without feathers and (half of) two

arrowheads with simple feathers, give a number of two lines. As b0(G) = 3, b1(G) = 2 and c = 2,

we see that b0(G) + b1(G)− c = 3 is indeed the number of ovals in C.

Figure 33. Ovals and lines and their Poincaré�Reeb graph.

Proof. For the �rst point we just notice that each line contributes to either an arrow without

feathers or to two arrows with simple feathers.

For the second point, the proof is by induction on the number of ovals. If there are no ovals, then

b0(G) = c, and b1(G) = 0, therefore the formula is valid. Now start with a con�guration C = ∂D
and add an oval that does not contain any other ovals. Let C′ be the new curve and G′ its graph.

Either the interior of the new oval is in D, in which case b0(G
′) = b0(G) and b1(G

′) = b1(G)+ 1,

or the interior of the new oval is in P \D, in which case b0(G
′) = b0(G) + 1 and b1(G

′) = b1(G).

In both cases c(G′) = c(G). Conclusion: b0(G
′) + b1(G

′)− c = (b0(G) + b1(G)− c) + 1. □

5.2. Interior and exterior graphs of domains of weakly �nite type

Let D be a generic domain of weakly �nite type in a vertical plane (P, π). Then the closure

Dc of P \ D in P is again a domain of weakly �nite type, as ∂D = ∂Dc. We say that the

Poincaré�Reeb graph G of D is the interior graph of D and that the Poincaré�Reeb graph Gc of

Dc is the exterior graph of D.
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Figure 34. Interior and exterior graphs of a domain of weakly �nite type.

In the next proposition, Poincaré-Reeb graphs are to be considered in the sense of De�nition 4.1,

that is, as Poincaré-Reeb graphs in the source:

Proposition 5.3. The interior graph G of a domain D of weakly �nite type determines its

exterior graph Gc.

Proof. The two graphs share the same non-arrowhead vertices. The local situation around a

non-arrowhead vertex is in accordance to the trident rule, where an exterior vertex is replaced by

an interior vertex and vice-versa (see Figure 35). We also extend this rule to arrowhead vertices.

Figure 35. The trident rule.

Now we derive Gc from G in two steps.

First step: make a local construction of the beginning of the edges of Gc according to the trident

rule (see Figure 36).

Figure 36. The trident rule applied at some vertices (here three vertices are completed).

Second step: complete each edge. It can be done in only one way up to vertical isotopies (see for

instance Figure 37).
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Figure 37. Completed exterior graph.

□
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