REDUCIBLE FIBERS OF POLYNOMIALS

ARNAUD BODIN

Abstract

We give an algorithm to find reducible fibers of a bivariate polynomial.

1. Ruppert's equation, Gao's theorem

Let \mathbb{F} be any field of characteristic p. Let $f \in \mathbb{F}[x, y]$. The aim of this note is to give a method to find the values c for which $f-c$ is reducible based on results of W. Ruppert and S. Gao, [Ru], [Ga].

We consider the following equation :

$$
\begin{equation*}
\frac{\partial}{\partial y}\left(\frac{g}{f-c}\right)=\frac{\partial}{\partial x}\left(\frac{h}{f-c}\right) \tag{1}
\end{equation*}
$$

where $g, h \in \mathbb{F}[x, y]$ are unknows and $f \in \mathbb{F}[x, y], c \in \mathbb{F}$ are given data. This equation can be "linearized" to the equivalent equation:

$$
\begin{equation*}
(f-c) \cdot\left(\frac{\partial g}{\partial y}-\frac{\partial h}{\partial x}\right)=g \cdot \frac{\partial f}{\partial y}-h \cdot \frac{\partial f}{\partial x} . \tag{2}
\end{equation*}
$$

Notice that this equation is linear in the coefficient of g and h.
The bidegree of a polynomial g is $\operatorname{deg} g=\left(\operatorname{deg}_{x} g, \operatorname{deg}_{y} g\right)$. Let (m, n) be the bidgree of f. We impose the following restrictions:

$$
\begin{equation*}
\operatorname{deg} g \leqslant(m-1, n), \quad \operatorname{deg} h \leqslant(m, n-1) \tag{3}
\end{equation*}
$$

The relation $\operatorname{deg} g \leqslant(m-1, n)$ means $\operatorname{deg}_{x} g \leqslant m-1$ and $\operatorname{deg}_{y} g \leqslant n$. Note that relations (3) define a finite dimensional vector space for the coefficients of g and h.

We suppose that f is not constant and that for all $c \in \mathbb{F}, \operatorname{gcd}(f-$ $\left.c, \frac{\partial f}{\partial x}\right)=1$. Then for each g there is at most one h that satisfies (2) and (3). We define

$$
G=\{g \in \mathbb{F}[x, y] \mid(2) \text { and (3) holds for some } h \in \mathbb{F}[x, y]\} .
$$

G is a finite dimensional vector space and is at least one dimensional because $g=\frac{\partial f}{\partial x} \in G$ (for $h=\frac{\partial f}{\partial y}$).

Date: September 27, 2005.

Theorem 1.1 (Ruppert,Gao). Let \mathbb{F} be a field of characteristic p and $f \in \mathbb{F}[x, y]$ of bidegree $(m, n), c \in \mathbb{F}$ with $\operatorname{gcd}\left(f-c, \frac{\partial f}{\partial x}\right)=1$. If $p=0$ or if $p>(2 m-1) n$ then the number of irreducible factors of $f-c$ is equal to the dimension of G.

2. Finding Reducible fibers

We apply this theorem to find reducible fibers of a polynomial $f \in$ $\mathbb{F}[x, y]$, that is to say find the values $c \in \mathbb{F}$ such that $f-c$ has more than one irreducible factor. The hypothesis $\operatorname{gcd}\left(f-c, \frac{\partial f}{\partial x}\right)=1$ implies that $f-c$ is reduced (i.e. do not have a repeated factor), by Stein factorization theorem this implies that the polynomial f is non-composite, that is to say not all fibers are reducible.

The method is has follows. Considers equation (2) where c, g, h are unknowns. This provides a linear system of equations in the coefficients of g and h with a parameter c. The vector space of solution has always the same dimension, excepted for a finite number of values. Theses values can be easily detected, for example after a Gauss reduction of the linear system. Then by theorem 1.1 these values are the values c such that $f-c$ is reducible.

We give below some examples and its implementation in the library reduc.lib for Singular, [Sing].

Example 2.1. Let $f(x, y)=x+y(x-1)(x-2) \in \mathbb{F}[x, y]$.
LIB "reduc.lib";
ring $r=0,(x, y, c), d p ;$
poly $f=x+y *(x-1) *(x-2)$; reducible(f);
> Reducible fibers $f-c$ corresponds to the roots of $c 2-1$
Then $f-1$ and $f-2$ are reducible.
Example 2.2. Let $q=x y+1, p=x q+1$ and $f(x, y)=3 y p^{3}+3 p^{2} q-$ $5 p q-q \in \mathbb{C}[x, y]$ be the Briançon polynomial.

```
LIB "reduc.lib";
ring r = 0, (x,y,c), dp;
poly q = xy+1;
poly p = x*q+1;
poly f = 3*y*p^3+3*p^2*q-5*p*q-q;
reducible(f);
```

The result is:

```
> Reducible fibers f-c corresponds to the roots of 1
```

This shows that there is no reducible fibers (as the root of the polynomial 1).

Example 2.3. We can have parameters and non-zero characteristic. Let $f_{s}(x, y)=x+y(x-1)(x-2)(x-s) \in \mathbb{F}_{7}[x, y]$.

LIB "reduc.lib";
ring $r=(7, s),(x, y, c), d p ;$
poly $\mathrm{f}=\mathrm{x}+\mathrm{y} *(\mathrm{x}-1) *(\mathrm{x}-2) *(\mathrm{x}-\mathrm{s})$;
reducible(f);
> Reducible fibers $f-c$ corresponds to the roots of $>\mathrm{c} 3+(-\mathrm{s}-3) * \mathrm{c} 2+(3 \mathrm{~s}+2) * \mathrm{c}+(-2 \mathrm{~s})$
After factorization we find that reducible fibers are for the value $c=$ $1, c=2, c=s$.

References

[Ga] S. Gao, Factoring multivariate polynomials via partial differential equations. Math. Comp. 72 (2003), 801-822.
[Ru] W. Ruppert. Reducibility of polynomials $f(x, y)$ modulo p. J. Number Theory 77 (1999), 62-70.
[Sing] G.-M. Greuel, G. Pfister, H. Schönemann. Singular: a computer algebra system for polynomial computations. Centre for computer algebra, university of Kaiserslautern, 2001, http://www.singular.uni-kl.de.

Laboratoire Paul Painlevé, Mathématiques, Université de Lille 1, 59655 Villeneuve D'Asce, France.

E-mail address: Arnaud.Bodin@math.univ-lille1.fr

