DECOMPOSITION OF POLYNOMIALS AND
APPROXIMATE ROOTS

ARNAUD BODIN

ABSTRACT. We state a kind of Euclidian division theorem: given
a polynomial P(z) and a divisor d of the degree of P, there exist
polynomials h(z), Q(z), R(x) such that P(z) = ho Q(z) + R(z),
with deg h = d. Under some conditions h, @), R are unique, and @
is the approximate d-root of P. Moreover we give an algorithm to
compute such a decomposition. We apply these results to decide
whether a polynomial in one or several variables is decomposable
or not.

1. INTRODUCTION

Let A be an integral domain (i.e. a unitary commutative ring without
zero divisors). Our main result is:

Theorem 1. Let P € A[x] be a monic polynomial. Let d > 2 such that
d 1s a dwisor of deg P and d s invertible in A. There exist h,Q, R €
Alx] such that

P(x) =hoQ(x)+ R(x)
with the conditions that
(i) h,Q are monic;
(ii) degh = d, coeff(h,z971) =0, deg R < deg P — &L,
(iii) R(z) =Y, rix" with (degQli = r; = 0).

Moreover such h,Q, R are unique.

The previous theorem has a formulation similar to the Euclidian
division; but here @ is not given (only its degree is fixed); there is
a natural @) (that we will compute, see Corollary 2) associated to P
and d. Notice also that the decomposition P(x) = ho Q(z) + R(zx) is
not the (Q-adic decomposition, since the coefficients before the powers

Q'(x) belong to A and not to Alz].
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Ezample. Let P(x) = 2% 4+ 62° + 62+ 1 € Q[z]. If d = 6 we find
the following decomposition P(x) = h o Q(z) + R(z) with h(x) =
28— 152" + 4023 — 452% + 302 — 10, Q(x) = x+1 and R(z) = 0. If d = 3
we have h(z) = 2% + 65, Q(x) = 2> + 22 — 4 and R(z) = 402® — 90x.
If d =2 we get h(z) = 22 — 22 Q(z) = 2% + 32> — o + Z and

4
R(z) = —1%z% 4 25y,

Theorem 1 will be of special interest when then ring A is itself a
polynomial ring. For instance at the end of the paper we give an
example of a decomposition of a polynomial in two variables P(z,y) €
Alz] for A = Ky].

The polynomial ) that appears in the decomposition has already
been introduced in a rather different context. We denote by v/P the
approximate d-root of P. It is the polynomial such that (\d/f)d approx-
imate P in a best way, that is to say P — (v/P)% has smallest possible
degree. The precise definition will be given in section 2, but we already
notice the following:

Corollary 2.

Q=P

We apply these results to another situation. Let A = K be a field
and d > 2. P € K|[z] is said to be d-decomposable in K [xz] if there exist
h,Q € K|z|, with deg h = d such that

P(z) = ho Q(x).
Corollary 3. Let A = K be a field. Suppose that char K does not

divide d. P is d-decomposable in K[z| if and only if R = 0 in the
decomposition of Theorem 1.

In particular, if P is d-decomposable, then P = ho Q with Q = v/P.

After the first version of this paper, M. Ayad and G. Cheze com-
municated us some references so that we can picture a part of history
of the subject. Approximate roots appeared (for d = 2) in some work
of E.D. Rainville [9] to find polynomial solutions of some Riccati type
differential equations. An approximate root was seen as the polynomial
part of the expansion of P(x)é into decreasing powers of x. The use of
approximate roots culminated with S.S. Abhyankar and T.T. Moh who
proved the so-called Abhyankar-Moh-Suzuki theorem in [1] and [2]. For
the latest subject we refer the reader to an excellent expository article
of P. Popescu-Pampu [8]. On the other hand Ritt’s decompostion the-
orems (see [10] for example) have led to several practical algorithms to
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decompose polynomials in one variable into the form P(z) = ho Q(z):
for example D. Kozen and S. Landau in [6] give an algorithm (refined
in [5]) that computes a decomposition in polynomial time. Unification
of both subjects starts with P.R. Lazov and A.F. Beardon ([7], [3]) for
polynomials in one variable over complex numbers: they notice that
the polynomial () is in fact the approximate d-root of P.

We define approximate roots in section 2 and prove uniqueness of the
decomposition of Theorem 1. Then in section 3 we prove the existence
of such decomposition and give an algorithm to compute it. Finally
in section 4 we apply these results to decomposable polynomials in
one variable and in section 5 to decomposable polynomials in several
variables.

2. APPROXIMATE ROOTS AND PROOF OF THE UNIQUENESS
The approximate roots of a polynomial are defined by the following
property, [1], [8, Proposition 3.1].

Proposition 4. Let P € A[z] a monic polynomial and d > 2 such that
d 1s a divisor of deg P and d is invertible in A. There exists a unique
monic polynomial QQ € Alz] such that:

We call Q the approzimate d-root of P and denote it by +/P.
Let us recall the proof from [§].

Proof. Write P(z) = 2" + a;2" ! + asz" 2 + ... + a, and we search an

equation for Q(z) =z +byxd "+ by >+ -+bs. We want deg(P —

Q%) < deg P— %, that is to say, the coefficients of ™, 2"~ 1, ... "~ d

in P — Q¢ equal zero. By expanding Q? we get the following system of

equations:

'al = db1

as = dby + (3)0?

(S) §:

ar=dbp+ Y b b, 1<k
1142604+ (k—1)ig_1=k

a3

\
where the coefficients ¢;,. ;,_, are the multinomial coefficients defined
by the following formula:

( d ) d!
Ciyig—y = | . = - - - .
etk U1y 0oy lp—1 21!"'Z]€,1!(d—21—"'—Zkfl)!
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The system (S) being a triangular system, we can inductively compute
_ (%

the b; for e = 1,2,...,5: by = %, by = 57—, ... Hence the system
(S) admits one and only one solution by, by, ..., bn.

Notice that we need d to be invertible in A to compute b;. Moreover
b; depends only on the first coefficients a4, ao, . .. ,Qn of P. 0

Proposition 4 enables us to prove Corollary 2: by condition (ii) of

Theorem 1 we know that deg(P — Q%) < deg P — deé%P so that @ is

the approximate d-root of P. Another way to compute /P is to use
iterations of Tschirnhausen transformation, see [1] or [8, Proposition
6.3]. We end this section by proving uniqueness of the decomposition
of Theorem 1.

Proof. @) is the approximate d-root of P so is unique (see Proposition
4 above). In order to prove the uniqueness of h and R, we argue by
contradiction. Suppose ho @ + R = h'o Q + R’ with R # R'; set r;x’
to be the highest monomial of R(z) — R'(x). From one hand z° is a
monomial of R or R, hence deg @ 1 i by condition (iii) of Theorem 1.
From the equality (W' —h)o@Q = R— R’ we deduce that i = deg(R— R’)
is a multiple of deg @ ; that yields a contradiction. Therefore R = R/,
hence h = h'. O

3. ALGORITHM AND PROOF OF THE EXISTENCE
Here is an algorithm to compute the decomposition of Theorem 1.

Algorithm 5.

e Input. P € Az, d|degP.

e Output. h,Q, R € Alz| such that P=hoQ + R.

o 1st step. Compute Q = /P by solving the triangular system
(S) of Proposition 4. Set hi(z) = x?, Ri(z) = 0.

e 2nd step. Compute P, = P— Q%= P—h1(Q)— Ry. Look for
its highest monomial a;x*. If deg Q|i then set hy(x) = hy(z) +
aix@, Ry = Ry. IfdegQ { i then Ry(z) = Ry(x) + a;x’,
hg - hl-

o 3thd step. Set P3 = P — hy(Q) — Ry, look for its highest

monomial a;x’,. ..

e ...
e Final step. P, =P — h, 1(Q) — R,_1 = 0 yields the decom-
position P =ho @ + R with h=h,_1 and R = R,_;.

The algorithm terminates because the degree of the P; decreases at
each step. It yields a decomposition P = h o () + R that verifies all
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the conditions of Theorem 1: in the second step of the algorithm, and

due to Proposition 4 we know that ¢ < deg P — %. That implies

coeff(hy, 2¢71) = 0 and deg Ry < deg P — %. Therefore at the end
coeff(h, z471) = 0. Of course the algorithm proves the existence of the

decomposition in Theorem 1.

4. DECOMPOSABLE POLYNOMIALS IN ONE VARIABLE

Let K be a field and d > 2. P € K|x] is said to be d-decomposable
in K[z] if there exist h, Q € Klz], with deg h = d such that

P(z) = ho Q(z).
We refer to [4] for references and recent results on decomposable poly-
nomials in one and several variables.

Proposition 6. Let A = K be a field whose characteristic does not
divide d. A monic polynomial P is d-decomposable in K [x] if and only
if R =20 in the decomposition P =ho () + R.

In view of Algorithm 5 we also get an algorithm to decide whether
a polynomial is decomposable or not and in the positive case give its
decomposition.

Proof. It R = 0 then P is d-decomposable. Conversly if P is d-
decomposable, then there exist h, ) € K[z] such that P = h(Q). As P
is monic we can suppose h, () monic. Moreover, up to a linear change
of coordinates * — x + «, we can suppose that coeff(h,z%!) = 0.
Therefore P = h(Q) is a decomposition that verifies the conditions of

Theorem 1. O
Remark. Let P(x) = 2" +a12" ' + - - - + a,, we first consider a1, ..., a,
as indeterminates (i.e. P is seen as an element of K (ay, ..., a,)[x]). The

coefficients of (), Q(z) and R(z) = rox"+riz* 1+ - -+r; (computed

by Proposition 4, the system (S§) and Algorithm 5) are polynomials in

the a;, in particular r; = r;(ay,...,a,) € Klay,...,a,],1=0,... k.
Now we consider aj, ..., a) € K as specializations of a,...,a, and

*

denote by P* the specialization of P at aj,...,a;. Then, by Proposi-
tion 6, P* is d-decomposable in K[z| if and only if r;(af,...,a}) =0
forall i =0,..., k. It expresses the set of d-decomposable monic poly-
nomials of degree n as an affine algebraic variety. We give explicit

equations in the following example.

Ezample. Let K be a field of characteristic different from 2. Let P(z) =
20 +a12° +asat +asx® +asx® +asx+ag be a monic polynomial of degree 6
in K[z| (the a; € K being indeterminates). Let d = 2. We first look for
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the approximate 2-root of P(z). ¢/ P(x) = Q(z) = z®+byx* + byx + bs.
In view of the triangular system (S) we get

blzﬂ b2:a2—b% b :a3—2blbg.

2’ 2 7 7 2
Once we have computed Q, we get h(z) = 2> + ag — b3. Therefore
R(z) = (ag — 2b1bs — b3)z* + (a5 — 2bobs3)z.
Now P(z) is 2-decomposable in K[z] if and only if R(z) = 0 in K|z]

that is to say if and only if (ay,...,as) satifies the polynomial system
of equations in ay,...,as:

ay — 2blbg — b% = O,

as — 2b2[)3 =0.

5. DECOMPOSABLE POLYNOMIALS IN SEVERAL VARIABLES

Again K is a field and d > 2. Set n > 2. P € Klzy,...,x,] is said
to be d-decomposable in K|xy, ..., x,)] if there exist Q € K{z1,...,x,],
and h € K[t] with degh = d, such that

P(zy,...,x,) =hoQ(z1,...,2,).

Proposition 7. Let A = Klza,...,z,), P € Alx1] = K[z1,...,2,)
monic in r1. Fiz d that divides deg, P, such that char K does not
divide d. P is d-decomposable in K[xq,...,x,] if and only if the de-
composition P = ho Q + R of Theorem 1 in Alz] verifies R =0 and
h € K[t] (instead of h € K[t, xa, ..., x,)]).

Proof. If P admits a decomposition as in Theorem 1 with R = 0 and
h € K[t] then P = ho Q is d-decomposable.

Conversly if P is d-decomposable in K{zi,...,x,] then P = ho
Q with h € Kt|, Q € K|zy,...,x,]. As P is monic in x; we may
suppose that h is monic and () is monic in z;. We can also suppose
coeff(h,t¥1) = 0. Therefore h, Q and R := 0 verify the conditions
of Theorem 1 in A[z]. As such a decomposition is unique, it ends the
proof. O

Ezample. Set A = K[y] and let P(z) = 2% + ay2° + agz* + azz® +
a,2* + a5z + ag be a monic polynomial of degree 6 in Alz] = K|z, ],
with coefficients a; = a;(y) € A = K[y]. In the example of section 4
we have computed the decomposition P = ho @ + R for d = 2 and set

b=, b= by — w=2ib We found h(t) = 2+ag—b2 € Alf]
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and R(x) = (ag —2b1b3 — b3)x? + (a5 — 2bsbs)x € Alz]. By Proposition 7
above, we get that P is 2-decomposable in K[z, y| if and only

ag — bg S K,
ag — 2blbg - b% =0 in K[y],
as — 2b2b3 =0 in K[y]

Each line yields a system of polynomial equations in the coefficients
aij € K of P(x,y) = Y aja'y’ € K[z,y]. In particular the set of
2-decomposable monic polynomials of degree 6 in K|z, y] is an affine
algebraic variety.
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