DECOMPOSITION OF POLYNOMIALS AND APPROXIMATE ROOTS

ARNAUD BODIN

ABSTRACT. We state a kind of Euclidian division theorem: given a polynomial P(x) and a divisor d of the degree of P, there exist polynomials h(x), Q(x), R(x) such that $P(x) = h \circ Q(x) + R(x)$, with deg h = d. Under some conditions h, Q, R are unique, and Qis the approximate d-root of P. Moreover we give an algorithm to compute such a decomposition. We apply these results to decide whether a polynomial in one or several variables is decomposable or not.

1. INTRODUCTION

Let A be an integral domain (i.e. a unitary commutative ring without zero divisors). Our main result is:

Theorem 1. Let $P \in A[x]$ be a monic polynomial. Let $d \ge 2$ such that d is a divisor of deg P and d is invertible in A. There exist $h, Q, R \in A[x]$ such that

$$P(x) = h \circ Q(x) + R(x)$$

with the conditions that

- (i) h, Q are monic;
- (ii) deg h = d, coeff $(h, x^{d-1}) = 0$, deg $R < \deg P \frac{\deg P}{d}$;
- (iii) $R(x) = \sum_{i} r_i x^i$ with $(\deg Q | i \Rightarrow r_i = 0)$.

Moreover such h, Q, R are unique.

The previous theorem has a formulation similar to the Euclidian division; but here Q is not given (only its degree is fixed); there is a natural Q (that we will compute, see Corollary 2) associated to P and d. Notice also that the decomposition $P(x) = h \circ Q(x) + R(x)$ is not the Q-adic decomposition, since the coefficients before the powers $Q^i(x)$ belong to A and not to A[x].

Date: October 16, 2009.

²⁰⁰⁰ Mathematics Subject Classification. 13B25.

 $Key\ words\ and\ phrases.$ Decomposable and indecomposable polynomials in one or several variables.

ARNAUD BODIN

Example. Let $P(x) = x^6 + 6x^5 + 6x + 1 \in \mathbb{Q}[x]$. If d = 6 we find the following decomposition $P(x) = h \circ Q(x) + R(x)$ with $h(x) = x^6 - 15x^4 + 40x^3 - 45x^2 + 30x - 10$, Q(x) = x + 1 and R(x) = 0. If d = 3 we have $h(x) = x^3 + 65$, $Q(x) = x^2 + 2x - 4$ and $R(x) = 40x^3 - 90x$. If d = 2 we get $h(x) = x^2 - \frac{725}{4}$, $Q(x) = x^3 + 3x^2 - \frac{9}{2}x + \frac{27}{2}$ and $R(x) = -\frac{405}{4}x^2 + \frac{255}{2}x$.

Theorem 1 will be of special interest when then ring A is itself a polynomial ring. For instance at the end of the paper we give an example of a decomposition of a polynomial in two variables $P(x, y) \in A[x]$ for A = K[y].

The polynomial Q that appears in the decomposition has already been introduced in a rather different context. We denote by $\sqrt[d]{P}$ the approximate d-root of P. It is the polynomial such that $(\sqrt[d]{P})^d$ approximate P in a best way, that is to say $P - (\sqrt[d]{P})^d$ has smallest possible degree. The precise definition will be given in section 2, but we already notice the following:

Corollary 2.

 $Q = \sqrt[d]{P}$

We apply these results to another situation. Let A = K be a field and $d \ge 2$. $P \in K[x]$ is said to be *d*-decomposable in K[x] if there exist $h, Q \in K[x]$, with deg h = d such that

$$P(x) = h \circ Q(x).$$

Corollary 3. Let A = K be a field. Suppose that char K does not divide d. P is d-decomposable in K[x] if and only if R = 0 in the decomposition of Theorem 1.

In particular, if P is d-decomposable, then $P = h \circ Q$ with $Q = \sqrt[d]{P}$.

After the first version of this paper, M. Ayad and G. Chèze communicated us some references so that we can picture a part of history of the subject. Approximate roots appeared (for d = 2) in some work of E.D. Rainville [9] to find polynomial solutions of some Riccati type differential equations. An approximate root was seen as the polynomial part of the expansion of $P(x)^{\frac{1}{d}}$ into decreasing powers of x. The use of approximate roots culminated with S.S. Abhyankar and T.T. Moh who proved the so-called Abhyankar-Moh-Suzuki theorem in [1] and [2]. For the latest subject we refer the reader to an excellent expository article of P. Popescu-Pampu [8]. On the other hand Ritt's decomposition theorems (see [10] for example) have led to several practical algorithms to decompose polynomials in one variable into the form $P(x) = h \circ Q(x)$: for example D. Kozen and S. Landau in [6] give an algorithm (refined in [5]) that computes a decomposition in polynomial time. Unification of both subjects starts with P.R. Lazov and A.F. Beardon ([7], [3]) for polynomials in one variable over complex numbers: they notice that the polynomial Q is in fact the approximate d-root of P.

We define approximate roots in section 2 and prove uniqueness of the decomposition of Theorem 1. Then in section 3 we prove the existence of such decomposition and give an algorithm to compute it. Finally in section 4 we apply these results to decomposable polynomials in one variable and in section 5 to decomposable polynomials in several variables.

2. Approximate roots and proof of the uniqueness

The approximate roots of a polynomial are defined by the following property, [1], [8, Proposition 3.1].

Proposition 4. Let $P \in A[x]$ a monic polynomial and $d \ge 2$ such that d is a divisor of deg P and d is invertible in A. There exists a unique monic polynomial $Q \in A[x]$ such that:

$$\deg(P - Q^d) < \deg P - \frac{\deg P}{d}.$$

We call Q the approximate d-root of P and denote it by $\sqrt[d]{P}$. Let us recall the proof from [8].

Proof. Write $P(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_n$ and we search an equation for $Q(x) = x^{\frac{n}{d}} + b_1 x^{\frac{n}{d}-1} + b_2 x^{\frac{n}{d}-2} + \cdots + b_{\frac{n}{d}}$. We want $\deg(P - Q^d) < \deg P - \frac{\deg P}{d}$, that is to say, the coefficients of $x^n, x^{n-1}, \ldots, x^{n-\frac{n}{d}}$ in $P - Q^d$ equal zero. By expanding Q^d we get the following system of equations:

$$(\mathcal{S}) \begin{cases} a_1 = db_1 \\ a_2 = db_2 + {d \choose 2} b_1^2 \\ \vdots \\ a_k = db_k + \sum_{\substack{i_1+2i_2+\dots+(k-1)i_{k-1}=k}} c_{i_1\dots i_{k-1}} b_1^{i_1} \cdots b_{k-1}^{i_{k-1}}, \qquad 1 \le k \le \frac{n}{d} \end{cases}$$

1

where the coefficients $c_{i_1...i_{k-1}}$ are the multinomial coefficients defined by the following formula:

$$c_{i_1\dots i_{k-1}} = \binom{d}{i_1,\dots,i_{k-1}} = \frac{d!}{i_1!\cdots i_{k-1}!(d-i_1-\dots-i_{k-1})!}$$

ARNAUD BODIN

The system (\mathcal{S}) being a triangular system, we can inductively compute the b_i for $i = 1, 2, \ldots, \frac{n}{d}$: $b_1 = \frac{a_1}{d}, b_2 = \frac{a_2 - \binom{d}{2}b_1^2}{d}, \ldots$ Hence the system (\mathcal{S}) admits one and only one solution $b_1, b_2, \ldots, b_{\frac{n}{d}}$.

Notice that we need d to be invertible in A to compute b_i . Moreover b_i depends only on the first coefficients $a_1, a_2, \ldots, a_{\frac{n}{d}}$ of P.

Proposition 4 enables us to prove Corollary 2: by condition (ii) of Theorem 1 we know that $\deg(P - Q^d) < \deg P - \frac{\deg P}{d}$ so that Q is the approximate d-root of P. Another way to compute $\sqrt[d]{P}$ is to use iterations of Tschirnhausen transformation, see [1] or [8, Proposition 6.3]. We end this section by proving uniqueness of the decomposition of Theorem 1.

Proof. Q is the approximate d-root of P so is unique (see Proposition 4 above). In order to prove the uniqueness of h and R, we argue by contradiction. Suppose $h \circ Q + R = h' \circ Q + R'$ with $R \neq R'$; set $r_i x^i$ to be the highest monomial of R(x) - R'(x). From one hand x^i is a monomial of R or R', hence $\deg Q \nmid i$ by condition (iii) of Theorem 1. From the equality $(h'-h) \circ Q = R - R'$ we deduce that $i = \deg(R - R')$ is a multiple of $\deg Q$; that yields a contradiction. Therefore R = R', hence h = h'.

3. Algorithm and proof of the existence

Here is an algorithm to compute the decomposition of Theorem 1.

Algorithm 5.

- Input. $P \in A[x], d | \deg P$.
- **Output.** $h, Q, R \in A[x]$ such that $P = h \circ Q + R$.
- 1st step. Compute Q = √P by solving the triangular system (S) of Proposition 4. Set h₁(x) = x^d, R₁(x) = 0.
 2nd step. Compute P₂ = P − Q^d = P − h₁(Q) − R₁. Look for
- 2nd step. Compute $P_2 = P Q^d = P h_1(Q) R_1$. Look for its highest monomial $a_i x^i$. If deg $Q \mid i$ then set $h_2(x) = h_1(x) + a_i x^{\frac{i}{\deg Q}}$, $R_2 = R_1$. If deg $Q \nmid i$ then $R_2(x) = R_1(x) + a_i x^i$, $h_2 = h_1$.
- 3thd step. Set $P_3 = P h_2(Q) R_2$, look for its highest monomial $a_i x^i, \ldots$
- . . .
- Final step. $P_n = P h_{n-1}(Q) R_{n-1} = 0$ yields the decomposition $P = h \circ Q + R$ with $h = h_{n-1}$ and $R = R_{n-1}$.

The algorithm terminates because the degree of the P_i decreases at each step. It yields a decomposition $P = h \circ Q + R$ that verifies all

5

the conditions of Theorem 1: in the second step of the algorithm, and due to Proposition 4 we know that $i < \deg P - \frac{\deg P}{d}$. That implies $\operatorname{coeff}(h_2, x^{d-1}) = 0$ and $\deg R_2 < \deg P - \frac{\deg P}{d}$. Therefore at the end $\operatorname{coeff}(h, x^{d-1}) = 0$. Of course the algorithm proves the existence of the decomposition in Theorem 1.

4. Decomposable polynomials in one variable

Let K be a field and $d \ge 2$. $P \in K[x]$ is said to be *d*-decomposable in K[x] if there exist $h, Q \in K[x]$, with deg h = d such that

$$P(x) = h \circ Q(x).$$

We refer to [4] for references and recent results on decomposable polynomials in one and several variables.

Proposition 6. Let A = K be a field whose characteristic does not divide d. A monic polynomial P is d-decomposable in K[x] if and only if R = 0 in the decomposition $P = h \circ Q + R$.

In view of Algorithm 5 we also get an algorithm to decide whether a polynomial is decomposable or not and in the positive case give its decomposition.

Proof. If R = 0 then P is d-decomposable. Conversely if P is d-decomposable, then there exist $h, Q \in K[x]$ such that P = h(Q). As P is monic we can suppose h, Q monic. Moreover, up to a linear change of coordinates $x \mapsto x + \alpha$, we can suppose that $\operatorname{coeff}(h, x^{d-1}) = 0$. Therefore P = h(Q) is a decomposition that verifies the conditions of Theorem 1.

Remark. Let $P(x) = x^n + a_1 x^{n-1} + \cdots + a_n$, we first consider a_1, \ldots, a_n as indeterminates (i.e. P is seen as an element of $K(a_1, \ldots, a_n)[x]$). The coefficients of h(x), Q(x) and $R(x) = r_0 x^k + r_1 x^{k-1} + \cdots + r_k$ (computed by Proposition 4, the system (\mathcal{S}) and Algorithm 5) are polynomials in the a_i , in particular $r_i = r_i(a_1, \ldots, a_n) \in K[a_1, \ldots, a_n], i = 0, \ldots, k$.

Now we consider $a_1^*, \ldots, a_n^* \in K$ as specializations of a_1, \ldots, a_n and denote by P^* the specialization of P at a_1^*, \ldots, a_n^* . Then, by Proposition 6, P^* is *d*-decomposable in K[x] if and only if $r_i(a_1^*, \ldots, a_n^*) = 0$ for all $i = 0, \ldots, k$. It expresses the set of *d*-decomposable monic polynomials of degree n as an affine algebraic variety. We give explicit equations in the following example.

Example. Let K be a field of characteristic different from 2. Let $P(x) = x^6 + a_1 x^5 + a_2 x^4 + a_3 x^3 + a_4 x^2 + a_5 x + a_6$ be a monic polynomial of degree 6 in K[x] (the $a_i \in K$ being indeterminates). Let d = 2. We first look for

ARNAUD BODIN

the approximate 2-root of P(x). $\sqrt[2]{P(x)} = Q(x) = x^3 + b_1 x^2 + b_2 x + b_3$. In view of the triangular system (S) we get

$$b_1 = \frac{a_1}{2}, \quad b_2 = \frac{a_2 - b_1^2}{2}, \quad b_3 = \frac{a_3 - 2b_1b_2}{2},$$

Once we have computed Q, we get $h(x) = x^2 + a_6 - b_3^2$. Therefore

$$R(x) = (a_4 - 2b_1b_3 - b_2^2)x^2 + (a_5 - 2b_2b_3)x.$$

Now P(x) is 2-decomposable in K[x] if and only if R(x) = 0 in K[x] that is to say if and only if (a_1, \ldots, a_6) satisfies the polynomial system of equations in a_1, \ldots, a_5 :

$$\begin{cases} a_4 - 2b_1b_3 - b_2^2 = 0, \\ a_5 - 2b_2b_3 = 0. \end{cases}$$

5. Decomposable polynomials in several variables

Again K is a field and $d \ge 2$. Set $n \ge 2$. $P \in K[x_1, \ldots, x_n]$ is said to be *d*-decomposable in $K[x_1, \ldots, x_n]$ if there exist $Q \in K[x_1, \ldots, x_n]$, and $h \in K[t]$ with deg h = d, such that

$$P(x_1,\ldots,x_n)=h\circ Q(x_1,\ldots,x_n).$$

Proposition 7. Let $A = K[x_2, ..., x_n]$, $P \in A[x_1] = K[x_1, ..., x_n]$ monic in x_1 . Fix d that divides $\deg_{x_1} P$, such that $\operatorname{char} K$ does not divide d. P is d-decomposable in $K[x_1, ..., x_n]$ if and only if the decomposition $P = h \circ Q + R$ of Theorem 1 in $A[x_1]$ verifies R = 0 and $h \in K[t]$ (instead of $h \in K[t, x_2, ..., x_n]$).

Proof. If P admits a decomposition as in Theorem 1 with R = 0 and $h \in K[t]$ then $P = h \circ Q$ is d-decomposable.

Conversly if P is d-decomposable in $K[x_1, \ldots, x_n]$ then $P = h \circ Q$ with $h \in K[t], Q \in K[x_1, \ldots, x_n]$. As P is monic in x_1 we may suppose that h is monic and Q is monic in x_1 . We can also suppose $\operatorname{coeff}(h, t^{d-1}) = 0$. Therefore h, Q and R := 0 verify the conditions of Theorem 1 in A[x]. As such a decomposition is unique, it ends the proof.

Example. Set A = K[y] and let $P(x) = x^6 + a_1x^5 + a_2x^4 + a_3x^3 + a_4x^2 + a_5x + a_6$ be a monic polynomial of degree 6 in A[x] = K[x, y], with coefficients $a_i = a_i(y) \in A = K[y]$. In the example of section 4 we have computed the decomposition $P = h \circ Q + R$ for d = 2 and set $b_1 = \frac{a_1}{2}$, $b_2 = \frac{a_2 - b_1^2}{2}$, $b_3 = \frac{a_3 - 2b_1b_2}{2}$. We found $h(t) = t^2 + a_6 - b_3^2 \in A[t]$

and $R(x) = (a_4 - 2b_1b_3 - b_2^2)x^2 + (a_5 - 2b_2b_3)x \in A[x]$. By Proposition 7 above, we get that P is 2-decomposable in K[x, y] if and only

$$\begin{cases} a_6 - b_3^2 \in K, \\ a_4 - 2b_1b_3 - b_2^2 = 0 & \text{in } K[y], \\ a_5 - 2b_2b_3 = 0 & \text{in } K[y]. \end{cases}$$

Each line yields a system of polynomial equations in the coefficients $a_{ij} \in K$ of $P(x, y) = \sum a_{ij} x^i y^j \in K[x, y]$. In particular the set of 2-decomposable monic polynomials of degree 6 in K[x, y] is an affine algebraic variety.

References

- S.S. Abhyankar, T.T. Moh, Newton-Puiseux expansion and generalized Tschirnhausen transformation. J. Reine Angew. Math. 260 (1973), 47–83 and 261 (1973), 29–54.
- [2] S.S. Abhyankar, T.T. Moh, Embeddings of the line in the plane. J. Reine Angew. Math. 276 (1975), 148–166.
- [3] A.F. Beardon, Composition factors of polynomials. The Chuang special issue. Complex Variables Theory Appl. 43 (2001), 225–239.
- [4] A. Bodin, P. Dèbes, S. Najib, Indecomposable polynomials and their spectrum. Acta Arith. 139 (2009), 79–100.
- [5] J.v.z. Gathen, Functional decomposition of polynomials: the tame case. J. Symb. Comp. 9 (1990), 281–299.
- [6] D. Kozen, S. Landau, Polynomial decomposition algorithms. J. Symb. Comp. 7 (1989), 445–456.
- [7] P.R. Lazov, A criterion for polynomial decomposition. Mat. Bilten 45 (1995), 43–52.
- [8] P. Popescu-Pampu, Approximate roots. Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999), Fields Inst. Commun. 33, Amer. Math. Soc. (2003), 285–321.
- [9] E.D. Rainville, Necessary conditions for polynomial solutions of certain Riccati equations. Amer. Math. Monthly 43 (1936), 473–476.
- [10] A. Schinzel, Polynomials with special regard to reducibility. Encyclopedia of Mathematics and its Applications, 77. Cambridge University Press, Cambridge, 2000.

Laboratoire Paul Painlevé, Mathématiques, Université de Lille 1, 59655 Villeneuve d'Ascq, France.

E-mail address: Arnaud.Bodin@math.univ-lille1.fr