# DECOMPOSITION OF POLYNOMIALS AND APPROXIMATE ROOTS 

ARNAUD BODIN


#### Abstract

We state a kind of Euclidian division theorem: given a polynomial $P(x)$ and a divisor $d$ of the degree of $P$, there exist polynomials $h(x), Q(x), R(x)$ such that $P(x)=h \circ Q(x)+R(x)$, with $\operatorname{deg} h=d$. Under some conditions $h, Q, R$ are unique, and $Q$ is the approximate $d$-root of $P$. Moreover we give an algorithm to compute such a decomposition. We apply these results to decide whether a polynomial in one or several variables is decomposable or not.


## 1. Introduction

Let $A$ be an integral domain (i.e. a unitary commutative ring without zero divisors). Our main result is:

Theorem 1. Let $P \in A[x]$ be a monic polynomial. Let $d \geqslant 2$ such that $d$ is a divisor of $\operatorname{deg} P$ and $d$ is invertible in $A$. There exist $h, Q, R \in$ $A[x]$ such that

$$
P(x)=h \circ Q(x)+R(x)
$$

with the conditions that
(i) $h, Q$ are monic;
(ii) $\operatorname{deg} h=d$, $\operatorname{coeff}\left(h, x^{d-1}\right)=0, \operatorname{deg} R<\operatorname{deg} P-\frac{\operatorname{deg} P}{d}$;
(iii) $R(x)=\sum_{i} r_{i} x^{i}$ with $\left(\operatorname{deg} Q \mid i \Rightarrow r_{i}=0\right)$.

Moreover such $h, Q, R$ are unique.
The previous theorem has a formulation similar to the Euclidian division; but here $Q$ is not given (only its degree is fixed); there is a natural $Q$ (that we will compute, see Corollary 2) associated to $P$ and $d$. Notice also that the decomposition $P(x)=h \circ Q(x)+R(x)$ is not the $Q$-adic decomposition, since the coefficients before the powers $Q^{i}(x)$ belong to $A$ and not to $A[x]$.

[^0]Example. Let $P(x)=x^{6}+6 x^{5}+6 x+1 \in \mathbb{Q}[x]$. If $d=6$ we find the following decomposition $P(x)=h \circ Q(x)+R(x)$ with $h(x)=$ $x^{6}-15 x^{4}+40 x^{3}-45 x^{2}+30 x-10, Q(x)=x+1$ and $R(x)=0$. If $d=3$ we have $h(x)=x^{3}+65, Q(x)=x^{2}+2 x-4$ and $R(x)=40 x^{3}-90 x$. If $d=2$ we get $h(x)=x^{2}-\frac{725}{4}, Q(x)=x^{3}+3 x^{2}-\frac{9}{2} x+\frac{27}{2}$ and $R(x)=-\frac{405}{4} x^{2}+\frac{255}{2} x$.

Theorem 1 will be of special interest when then ring $A$ is itself a polynomial ring. For instance at the end of the paper we give an example of a decomposition of a polynomial in two variables $P(x, y) \in$ $A[x]$ for $A=K[y]$.

The polynomial $Q$ that appears in the decomposition has already been introduced in a rather different context. We denote by $\sqrt[d]{P}$ the approximate $d$-root of $P$. It is the polynomial such that $(\sqrt[d]{P})^{d}$ approximate $P$ in a best way, that is to say $P-(\sqrt[d]{P})^{d}$ has smallest possible degree. The precise definition will be given in section 2 , but we already notice the following:

## Corollary 2.

$$
Q=\sqrt[d]{P}
$$

We apply these results to another situation. Let $A=K$ be a field and $d \geqslant 2 . P \in K[x]$ is said to be $d$-decomposable in $K[x]$ if there exist $h, Q \in K[x]$, with $\operatorname{deg} h=d$ such that

$$
P(x)=h \circ Q(x) .
$$

Corollary 3. Let $A=K$ be a field. Suppose that char $K$ does not divide $d . \quad P$ is $d$-decomposable in $K[x]$ if and only if $R=0$ in the decomposition of Theorem 1.

In particular, if $P$ is $d$-decomposable, then $P=h \circ Q$ with $Q=\sqrt[d]{P}$.
After the first version of this paper, M. Ayad and G. Chèze communicated us some references so that we can picture a part of history of the subject. Approximate roots appeared (for $d=2$ ) in some work of E.D. Rainville [9] to find polynomial solutions of some Riccati type differential equations. An approximate root was seen as the polynomial part of the expansion of $P(x)^{\frac{1}{d}}$ into decreasing powers of $x$. The use of approximate roots culminated with S.S. Abhyankar and T.T. Moh who proved the so-called Abhyankar-Moh-Suzuki theorem in [1] and [2]. For the latest subject we refer the reader to an excellent expository article of P. Popescu-Pampu [8]. On the other hand Ritt's decompostion theorems (see [10] for example) have led to several practical algorithms to
decompose polynomials in one variable into the form $P(x)=h \circ Q(x)$ : for example D. Kozen and S. Landau in [6] give an algorithm (refined in [5]) that computes a decomposition in polynomial time. Unification of both subjects starts with P.R. Lazov and A.F. Beardon ([7], [3]) for polynomials in one variable over complex numbers: they notice that the polynomial $Q$ is in fact the approximate $d$-root of $P$.

We define approximate roots in section 2 and prove uniqueness of the decomposition of Theorem 1. Then in section 3 we prove the existence of such decomposition and give an algorithm to compute it. Finally in section 4 we apply these results to decomposable polynomials in one variable and in section 5 to decomposable polynomials in several variables.

## 2. Approximate roots and proof of the uniqueness

The approximate roots of a polynomial are defined by the following property, [1], [8, Proposition 3.1].

Proposition 4. Let $P \in A[x]$ a monic polynomial and $d \geqslant 2$ such that $d$ is a divisor of $\operatorname{deg} P$ and $d$ is invertible in $A$. There exists a unique monic polynomial $Q \in A[x]$ such that:

$$
\operatorname{deg}\left(P-Q^{d}\right)<\operatorname{deg} P-\frac{\operatorname{deg} P}{d}
$$

We call $Q$ the approximate $d$-root of $P$ and denote it by $\sqrt[d]{P}$.
Let us recall the proof from [8].
Proof. Write $P(x)=x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n}$ and we search an equation for $Q(x)=x^{\frac{n}{d}}+b_{1} x^{\frac{n}{d}-1}+b_{2} x^{\frac{n}{d}-2}+\cdots+b_{\frac{n}{d}}$. We want $\operatorname{deg}(P-$ $\left.Q^{d}\right)<\operatorname{deg} P-\frac{\operatorname{deg} P}{d}$, that is to say, the coefficients of $x^{n}, x^{n-1}, \ldots, x^{n-\frac{n}{d}}$ in $P-Q^{d}$ equal zero. By expanding $Q^{d}$ we get the following system of equations:

$$
\left\{\begin{array}{l}
a_{1}=d b_{1}  \tag{S}\\
a_{2}=d b_{2}+\binom{d}{2} b_{1}^{2} \\
\vdots \\
a_{k}=d b_{k}+\sum_{i_{1}+2 i_{2}+\cdots+(k-1) i_{k-1}=k} c_{i_{1} \ldots i_{k-1}} b_{1}^{i_{1}} \cdots b_{k-1}^{i_{k-1}}, \quad 1 \leqslant k \leqslant \frac{n}{d}
\end{array}\right.
$$

where the coefficients $c_{i_{1} \ldots i_{k-1}}$ are the multinomial coefficients defined by the following formula:

$$
c_{i_{1} \ldots i_{k-1}}=\binom{d}{i_{1}, \ldots, i_{k-1}}=\frac{d!}{i_{1}!\cdots i_{k-1}!\left(d-i_{1}-\cdots-i_{k-1}\right)!} .
$$

The system ( $\mathcal{S}$ ) being a triangular system, we can inductively compute the $b_{i}$ for $i=1,2, \ldots, \frac{n}{d}: b_{1}=\frac{a_{1}}{d}, b_{2}=\frac{a_{2}-\binom{d}{2} b_{1}^{2}}{d}, \ldots$ Hence the system $(\mathcal{S})$ admits one and only one solution $b_{1}, b_{2}, \ldots, b_{\frac{n}{d}}$.

Notice that we need $d$ to be invertible in $A$ to compute $b_{i}$. Moreover $b_{i}$ depends only on the first coefficients $a_{1}, a_{2}, \ldots, a_{\frac{n}{d}}$ of $P$.

Proposition 4 enables us to prove Corollary 2: by condition (ii) of Theorem 1 we know that $\operatorname{deg}\left(P-Q^{d}\right)<\operatorname{deg} P-\frac{\operatorname{deg} P}{d}$ so that $Q$ is the approximate $d$-root of $P$. Another way to compute $\sqrt[d]{P}$ is to use iterations of Tschirnhausen transformation, see [1] or [8, Proposition 6.3 . We end this section by proving uniqueness of the decomposition of Theorem 1 .

Proof. $Q$ is the approximate $d$-root of $P$ so is unique (see Proposition 4 above). In order to prove the uniqueness of $h$ and $R$, we argue by contradiction. Suppose $h \circ Q+R=h^{\prime} \circ Q+R^{\prime}$ with $R \neq R^{\prime}$; set $r_{i} x^{i}$ to be the highest monomial of $R(x)-R^{\prime}(x)$. From one hand $x^{i}$ is a monomial of $R$ or $R^{\prime}$, hence $\operatorname{deg} Q \nmid i$ by condition (iii) of Theorem 1 . From the equality $\left(h^{\prime}-h\right) \circ Q=R-R^{\prime}$ we deduce that $i=\operatorname{deg}\left(R-R^{\prime}\right)$ is a multiple of $\operatorname{deg} Q$; that yields a contradiction. Therefore $R=R^{\prime}$, hence $h=h^{\prime}$.

## 3. Algorithm and proof of the existence

Here is an algorithm to compute the decomposition of Theorem 1.

## Algorithm 5.

- Input. $P \in A[x], d \mid \operatorname{deg} P$.
- Output. $h, Q, R \in A[x]$ such that $P=h \circ Q+R$.
- 1st step. Compute $Q=\sqrt[d]{P}$ by solving the triangular system $(\mathcal{S})$ of Proposition 4. Set $h_{1}(x)=x^{d}, R_{1}(x)=0$.
- 2nd step. Compute $P_{2}=P-Q^{d}=P-h_{1}(Q)-R_{1}$. Look for its highest monomial $a_{i} x^{i}$. If $\operatorname{deg} Q \mid i$ then set $h_{2}(x)=h_{1}(x)+$ $a_{i} x^{\frac{i}{\operatorname{deg} Q}}, R_{2}=R_{1}$. If $\operatorname{deg} Q \nmid i$ then $R_{2}(x)=R_{1}(x)+a_{i} x^{i}$, $h_{2}=h_{1}$.
- 3thd step. Set $P_{3}=P-h_{2}(Q)-R_{2}$, look for its highest monomial $a_{i} x^{i}, \ldots$
- ...
- Final step. $P_{n}=P-h_{n-1}(Q)-R_{n-1}=0$ yields the decomposition $P=h \circ Q+R$ with $h=h_{n-1}$ and $R=R_{n-1}$.

The algorithm terminates because the degree of the $P_{i}$ decreases at each step. It yields a decomposition $P=h \circ Q+R$ that verifies all
the conditions of Theorem 1: in the second step of the algorithm, and due to Proposition 4 we know that $i<\operatorname{deg} P-\frac{\operatorname{deg} P}{d}$. That implies $\operatorname{coeff}\left(h_{2}, x^{d-1}\right)=0$ and $\operatorname{deg} R_{2}<\operatorname{deg} P-\frac{\operatorname{deg} P}{d}$. Therefore at the end $\operatorname{coeff}\left(h, x^{d-1}\right)=0$. Of course the algorithm proves the existence of the decomposition in Theorem 1.

## 4. Decomposable polynomials in one variable

Let $K$ be a field and $d \geqslant 2 . P \in K[x]$ is said to be $d$-decomposable in $K[x]$ if there exist $h, Q \in K[x]$, with $\operatorname{deg} h=d$ such that

$$
P(x)=h \circ Q(x) .
$$

We refer to [4] for references and recent results on decomposable polynomials in one and several variables.

Proposition 6. Let $A=K$ be a field whose characteristic does not divide d. A monic polynomial $P$ is d-decomposable in $K[x]$ if and only if $R=0$ in the decomposition $P=h \circ Q+R$.

In view of Algorithm 5 we also get an algorithm to decide whether a polynomial is decomposable or not and in the positive case give its decomposition.

Proof. If $R=0$ then $P$ is $d$-decomposable. Conversly if $P$ is $d$ decomposable, then there exist $h, Q \in K[x]$ such that $P=h(Q)$. As $P$ is monic we can suppose $h, Q$ monic. Moreover, up to a linear change of coordinates $x \mapsto x+\alpha$, we can suppose that $\operatorname{coeff}\left(h, x^{d-1}\right)=0$. Therefore $P=h(Q)$ is a decomposition that verifies the conditions of Theorem 1.

Remark. Let $P(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$, we first consider $a_{1}, \ldots, a_{n}$ as indeterminates (i.e. $P$ is seen as an element of $\left.K\left(a_{1}, \ldots, a_{n}\right)[x]\right)$. The coefficients of $h(x), Q(x)$ and $R(x)=r_{0} x^{k}+r_{1} x^{k-1}+\cdots+r_{k}$ (computed by Proposition 4 , the system ( $\mathcal{S}$ ) and Algorithm 5) are polynomials in the $a_{i}$, in particular $r_{i}=r_{i}\left(a_{1}, \ldots, a_{n}\right) \in K\left[a_{1}, \ldots, a_{n}\right], i=0, \ldots, k$.

Now we consider $a_{1}^{*}, \ldots, a_{n}^{*} \in K$ as specializations of $a_{1}, \ldots, a_{n}$ and denote by $P^{*}$ the specialization of $P$ at $a_{1}^{*}, \ldots, a_{n}^{*}$. Then, by Proposition $6, P^{*}$ is $d$-decomposable in $K[x]$ if and only if $r_{i}\left(a_{1}^{*}, \ldots, a_{n}^{*}\right)=0$ for all $i=0, \ldots, k$. It expresses the set of $d$-decomposable monic polynomials of degree $n$ as an affine algebraic variety. We give explicit equations in the following example.

Example. Let $K$ be a field of characteristic different from 2. Let $P(x)=$ $x^{6}+a_{1} x^{5}+a_{2} x^{4}+a_{3} x^{3}+a_{4} x^{2}+a_{5} x+a_{6}$ be a monic polynomial of degree 6 in $K[x]$ (the $a_{i} \in K$ being indeterminates). Let $d=2$. We first look for
the approximate 2-root of $P(x) . \sqrt[2]{P(x)}=Q(x)=x^{3}+b_{1} x^{2}+b_{2} x+b_{3}$.
In view of the triangular system $(\mathcal{S})$ we get

$$
b_{1}=\frac{a_{1}}{2}, \quad b_{2}=\frac{a_{2}-b_{1}^{2}}{2}, \quad b_{3}=\frac{a_{3}-2 b_{1} b_{2}}{2}
$$

Once we have computed $Q$, we get $h(x)=x^{2}+a_{6}-b_{3}^{2}$. Therefore

$$
R(x)=\left(a_{4}-2 b_{1} b_{3}-b_{2}^{2}\right) x^{2}+\left(a_{5}-2 b_{2} b_{3}\right) x
$$

Now $P(x)$ is 2-decomposable in $K[x]$ if and only if $R(x)=0$ in $K[x]$ that is to say if and only if $\left(a_{1}, \ldots, a_{6}\right)$ satifies the polynomial system of equations in $a_{1}, \ldots, a_{5}$ :

$$
\left\{\begin{array}{l}
a_{4}-2 b_{1} b_{3}-b_{2}^{2}=0 \\
a_{5}-2 b_{2} b_{3}=0
\end{array}\right.
$$

## 5. Decomposable polynomials in several variables

Again $K$ is a field and $d \geqslant 2$. Set $n \geqslant 2$. $P \in K\left[x_{1}, \ldots, x_{n}\right]$ is said to be $d$-decomposable in $K\left[x_{1}, \ldots, x_{n}\right]$ if there exist $Q \in K\left[x_{1}, \ldots, x_{n}\right]$, and $h \in K[t]$ with $\operatorname{deg} h=d$, such that

$$
P\left(x_{1}, \ldots, x_{n}\right)=h \circ Q\left(x_{1}, \ldots, x_{n}\right)
$$

Proposition 7. Let $A=K\left[x_{2}, \ldots, x_{n}\right], P \in A\left[x_{1}\right]=K\left[x_{1}, \ldots, x_{n}\right]$ monic in $x_{1}$. Fix d that divides $\operatorname{deg}_{x_{1}} P$, such that char $K$ does not divide $d . P$ is d-decomposable in $K\left[x_{1}, \ldots, x_{n}\right]$ if and only if the decomposition $P=h \circ Q+R$ of Theorem 1 in $A\left[x_{1}\right]$ verifies $R=0$ and $h \in K[t]$ (instead of $h \in K\left[t, x_{2}, \ldots, x_{n}\right]$ ).

Proof. If $P$ admits a decomposition as in Theorem 1 with $R=0$ and $h \in K[t]$ then $P=h \circ Q$ is $d$-decomposable.

Conversly if $P$ is $d$-decomposable in $K\left[x_{1}, \ldots, x_{n}\right]$ then $P=h \circ$ $Q$ with $h \in K[t], Q \in K\left[x_{1}, \ldots, x_{n}\right]$. As $P$ is monic in $x_{1}$ we may suppose that $h$ is monic and $Q$ is monic in $x_{1}$. We can also suppose $\operatorname{coeff}\left(h, t^{d-1}\right)=0$. Therefore $h, Q$ and $R:=0$ verify the conditions of Theorem 1 in $A[x]$. As such a decomposition is unique, it ends the proof.

Example. Set $A=K[y]$ and let $P(x)=x^{6}+a_{1} x^{5}+a_{2} x^{4}+a_{3} x^{3}+$ $a_{4} x^{2}+a_{5} x+a_{6}$ be a monic polynomial of degree 6 in $A[x]=K[x, y]$, with coefficients $a_{i}=a_{i}(y) \in A=K[y]$. In the example of section 4 we have computed the decomposition $P=h \circ Q+R$ for $d=2$ and set $b_{1}=\frac{a_{1}}{2}, \quad b_{2}=\frac{a_{2}-b_{1}^{2}}{2}, \quad b_{3}=\frac{a_{3}-2 b_{1} b_{2}}{2}$. We found $h(t)=t^{2}+a_{6}-b_{3}^{2} \in A[t]$
and $R(x)=\left(a_{4}-2 b_{1} b_{3}-b_{2}^{2}\right) x^{2}+\left(a_{5}-2 b_{2} b_{3}\right) x \in A[x]$. By Proposition 7 above, we get that $P$ is 2-decomposable in $K[x, y]$ if and only

$$
\left\{\begin{array}{l}
a_{6}-b_{3}^{2} \in K, \\
a_{4}-2 b_{1} b_{3}-b_{2}^{2}=0 \quad \text { in } K[y], \\
a_{5}-2 b_{2} b_{3}=0 \quad \text { in } K[y]
\end{array}\right.
$$

Each line yields a system of polynomial equations in the coefficients $a_{i j} \in K$ of $P(x, y)=\sum a_{i j} x^{i} y^{j} \in K[x, y]$. In particular the set of 2-decomposable monic polynomials of degree 6 in $K[x, y]$ is an affine algebraic variety.

## References

[1] S.S. Abhyankar, T.T. Moh, Newton-Puiseux expansion and generalized Tschirnhausen transformation. J. Reine Angew. Math. 260 (1973), 47-83 and 261 (1973), 29-54.
[2] S.S. Abhyankar, T.T. Moh, Embeddings of the line in the plane. J. Reine Angew. Math. 276 (1975), 148-166.
[3] A.F. Beardon, Composition factors of polynomials. The Chuang special issue. Complex Variables Theory Appl. 43 (2001), 225-239.
[4] A. Bodin, P. Dèbes, S. Najib, Indecomposable polynomials and their spectrum. Acta Arith. 139 (2009), 79-100.
[5] J.v.z. Gathen, Functional decomposition of polynomials: the tame case. J. Symb. Comp. 9 (1990), 281-299.
[6] D. Kozen, S. Landau, Polynomial decomposition algorithms. J. Symb. Comp. 7 (1989), 445-456.
[7] P.R. Lazov, A criterion for polynomial decomposition. Mat. Bilten 45 (1995), 43-52.
[8] P. Popescu-Pampu, Approximate roots. Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999), Fields Inst. Commun. 33, Amer. Math. Soc. (2003), 285-321.
[9] E.D. Rainville, Necessary conditions for polynomial solutions of certain Riccati equations. Amer. Math. Monthly 43 (1936), 473-476.
[10] A. Schinzel, Polynomials with special regard to reducibility. Encyclopedia of Mathematics and its Applications, 77. Cambridge University Press, Cambridge, 2000.

Laboratoire Paul Painlevé, Mathématiques, Université de Lille 1, 59655 Villeneuve d'Asce, France.

E-mail address: Arnaud.Bodin@math.univ-lille1.fr


[^0]:    Date: October 16, 2009.
    2000 Mathematics Subject Classification. 13B25.
    Key words and phrases. Decomposable and indecomposable polynomials in one or several variables.

