REDUCIBILITY OF RATIONAL FUNCTIONS IN
SEVERAL VARIABLES

ARNAUD BODIN

ABSTRACT. We prove a analogous of Stein theorem for rational
functions in several variables: we bound the number of reducible
fibers by a formula depending on the degree of the fraction.

1. INTRODUCTION
Let K be an algebraically closed field. Let f = 2 € K(z), with

q
= (x1,...,2,), n = 2 and ged(p, q) = 1, the degree of f is deg f =
max{degp, deg q}. We associate to a fraction f = § the pencil p — Ag,
A € K (where we denote K = K U {oo} and by convention if A = oo
then p — Aqg = q).
For each A € K write the decomposition into irreducible factors:
nx
p— A= H F.
i=1
The spectrum of f is o(f) = {\ € K | ny > 1}, and the order of
reducibility is p(f) = >\ cp(na — 1).
A fraction f is composite if it is the composition of a univariate
rational fraction of degree more than 1 with another rational function.

Theorem 1.1. Let K be an algebraically closed field of characteristic
0. Let f € K(x) be non-composite then

p(f) < (deg f)? + deg f.

A theorem of Bertini and Krull implies that if f is non-composite
then o(f) is finite and we should notice that #o(f) < p(f). Later
on, for an algebraically closed field of characteristic zero and for a
polynomial f € Klz,y|, Stein [St] proved the formula p(f) < deg f.
This formula has been generalized in several directions, see [Nal] for
references. For a rational function f € C(z,y) a consequence of the
work of Ruppert [Ru] on pencil of curves, is that #0(f) < (deg f)?. For
K algebraically closed (of any characteristic) and f € K(x,y) Lorenzini
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[Lo] proved under geometric hypotheses on the pencil (p — Ag) that
p(f) < (deg f)?. This has been generalized by Vistoli [Vi] for a pencil
in several variables for an algebraically closed field of characteristic 0.

Let us give an example extracted from [Lo|. Let f(x,y) = T EEm

then deg(f) = 3 and o(f) = {1, 7, 7% 00} (where {1, 7, j} are the third
roots of unity). For A € o(f), (f = \) is composed of three lines hence
p(f) = 8 = (deg f)?> — 1. Then Lorenzini’s bound is optimal in two
variables.

The motivation of this work is that we develop the analogous theory
of Stein for rational function: composite fractions, kernels of Jacobian
derivatives, groups of divisors,... The method for the two variables case
is inspired from the work of Stein [St] and the presentation of that work
by Najib [Nal]. For completeness even the proofs similar to the ones of
Stein have been included. Another motivation is that with a bit more
effort we get the case of several variables by following the ideas of [Nal]
(see the articles [Na2], [Na3]).

In §2 we prove that a fraction is non-composite if and only its spec-
trum is finite. Then in §3 we introduce a theory of Jacobian derivation
and compute the kernel. Next in §4 we prove that for a non-composite
fraction in two variables p(f) < (deg f)? + deg f. Finally in §5 we
extend this formula to several variables and we end by stating a result
for fields of any characteristic.

Acknowledgements: 1 wish to thank Pierre Debes and Salah Najib
for discussions and encouragements.

2. COMPOSITE RATIONAL FUNCTIONS
Let K be an algebraically closed field. Let x = (z1,...,2,), n > 2.

Definition 2.1. A rational function f € K(z) is composite if there exist
g € K(z) and r € K(t) with degr > 2 such that
f=rog.

Theorem 2.2. Let f = § € K(z). The following assertions are equiv-
alent:

(1) f is composite;

(2) p— Aq is reducible in K[z] for all A € K such that degp — \q =

deg f; A
(3) p— Aq is reducible in Klx| for infinitely many \ € K.
Before proving this result we give two corollaries.

Corollary 2.3. f is non-composite if and only if its spectrum o(f) is
finite.

2y’ +(1+aty)?

Y
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One aim of this paper is to give a bound for ¢(f). The hard impli-
cation of this theorem (3) = (1) is in fact a reformulation of a theorem
of Bertini and Krull.

We also give a nice application pointed out to us by P. Débes:

Corollary 2.4. Let p € K|z] irreducible. Let ¢ € K|z] with degq <
degp and ged(p,q) = 1. Then for all but finitely many A € K, p — A\q
is irreducible in K|z].

Convention : When we define a fraction F' = g we will assume that
ged(P,Q) = 1.

We start with the easy part of Theorem 2.2:
Proof. (2) = (3) is trivial. Let us prove (1) = (2). Let f =

P
q

composite rational function. There exist g = * € K(z) and r € K(t)
with & = degr > 2 such that f = rog . Let us write r = ¢
b

A € K such that dega — A\b = degr and factorize a(t) —
at —t)(t—ta) - (t—t), o € K* ty,... t), € K. Then

p—M=q-(f=N=q (a_bAb> (9) = aq(g_tl)l)‘('g')(g—tk).

Then by multiplication by v* at the numerator and denominator we
get:

(p = Ag) - (v*0(9)) = aq(u — tv) - -~ (u — tyv),
which is a polynomial identity. As ged(a,b) = 1, ged(u,v) = 1 and
ged(p, q) = 1 then v — tyv, ..., u — tv divide p — A\g. Hence p — Aq is
reducible in K[z]. O

Let us reformulate the Bertini-Krull theorem in our context from [Sc,
Theorem 37]. It will enable us to end the proof of Theorem 2.2.

Theorem 2.5 (Bertini, Krull). Let F(z,\) = p(z) — A\q(z) € K|z, )|

an irreducible polynomaial. Then the following conditions are equivalent:

(1) F(z, o) € K[z] is reducible for all \y € K such that deg, F'(z, \o) =

deg, F'.

(2) (a) either there exist ¢,v € K|x] with deg, ' > max{deg ¢, deg )},

and a; € K[\], such that

Flz,\) =) ai(No(@)" b ()"
(b) or char(K) =7 > 0 and F(z,\) € K[z™, \], where 2™ =

(af,...,a7).
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We now end the proof of Theorem 2.2:

Proof. (3) = (1) Suppose that p — A\ggq is reducible in K{z| for in-
finitely many Ao € K then it is reducible for all Ay € K such that
deg, F(z,\g) = deg, F' (see Corollary 3 of Theorem 32 of [Sc]). We
apply Bertini-Krull theorem:
Case (a): F(z,\) = p(z) — Ag(z) can be written:
p(z) — Aq(z) = ) ai(N)d(z)" ¥ (z)".

1=

o

So we may suppose that for ¢ = 1,...,n, deg,a; = 1, let us write
a;i(A) = o; — AB;, o, 3 € K. Then

Zwﬁ”% oY oY) @,

=0

q@zi@mvw WZ@();

If we set g(x) = ﬁ(%) € Klz], and r(t) = %% Og’tl then 2(z) =roy.
Moreover as deg, F' > max{deg ¢, deg} this implies n > 2 so that
degr > 2. Then% = f =rog is a composite rational function

Case (b): Let m = char(K) > 0 and F(z,\) = p(z) — A\¢(z) €
K[z™ A], For A = 0 it implies that p(z) = P(2™), then there exists
p € K|z] such that p(z) = (p'(z))". For A = —1 we obtain s’ € K|z

such that p(z) + ¢(z) = § s'(z))". Then q(z) = (p(z) + q(z)) — p(z) =

and

(s'(2))" = (W'(2))" = (s'(z) —p/(z))". Then if we set ¢ = &' — p'
we obtain ¢(z) = (q (2))". Now set r(t) = ¢™ and g = L we get

3. KERNEL OF THE JACOBIAN DERIVATION

We now consider the two variables case and K is an uncountable
algebraically closed field of characteristic zero.

3.1. Jacobian derivation. Let f,g € K(x,y), the following formula:

dof 0g 0f dg

Dy(g) = 2009199,

Ordy Oy ox
defines a derivation Dy : K(x,y) — K(z,y). Notice the D¢(g) is the
determinant of the Jacobian matrix of (f,g). We denote by C the

kernel of Dy:
Cy={g9€ K(z,y) | Ds(g) =0} .
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Then C is a subfield of K(z,y). We have the inclusion K(f) C Cy.
Moreover if g* € Cy, k € Z\ {0} then g € C;.

Lemma 3.1. Let f =%, g € K(x,y). The following conditions are
equivalent:
(1) g € Cf,‘
(2) f and g are algebraically dependent;
(3) g is constant on irreducible components of the curves (p — Aq =
0) for all but finitely many \ € K ;
(4) g is constant on infinitely many irreducible components of the
curves (p— Ag=0), A € K.

Corollary 3.2. If g € Cy is not a constant then Cy = C,,.

Proof.

e (1) & (2). We follow the idea of [Nal] instead of [St]. f and
g are algebraically dependent if and only transcx K(f,g) = 1.
And transcx K (f,g) = 1 if and only the rank of the Jacobian
matrix of (f,g) is less or equal to 1, which is equivalent to
g e Cf.

e (2) = (3). Let f and g be algebraically dependent. Then there
exists a two variables polynomial in f and g that vanishes. Let
us write

Z Rz’(f)gi =0

where R;(t) € K[t]. Let us write f = 2, g = % and R,(t) =
alt—A) -+ (t —A\p). Then

Z Ri<2—9> <E>Z = 0, hence Z Ri<z—9>uiv”_i =0.
im0 17U io 1

By multiplication by ¢¢ for d = max{deg R;} (in order that
qdRi(g) are polynomials) we obtain

¢"R,, (S)un = (—qanl (g)unl — .. ) _

As ged(u,v) = 1 then v divides the polynomial qan(g), then v
divides ¢~ (p — A\1q) - - - (p — Amgq). Then all irreducible factors
of v divide gor p— XN;q, i =1,...,m.

Let A ¢ {00, A1, ..., An}. Let Vy be an irreducible component
of p— Ag, then VN Z(v) is zero dimensional (or empty). Hence
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v is not identically equal to 0 on V). Then for all but finitely
many (z,y) € V) we get:

Z Ri(N)g(z,y)" = 0.

Therefore g can only reach a finite number of values ¢y, ..., ¢,
(the roots of Y, R;(A)t"). Since Vj is irreducible, g is constant
on Vj.

e (3) = (4). Clear.

e (4) = (1). We first give a proof that if ¢ is constant along an
irreducible component V) of (p —Ag = 0) then D¢(g) =0 on V)
(we suppose that V) is not in the poles of g). Let (xo,y0) € Vi
and t — p(t) be a local parametrization of V) around (z¢, yo)-
By definition of p(t) we have f(p(t)) = A, this implies that:

dp | ———=\ _ d(f(p(t))
<d_]t) gradf>:d—zz:O

and by hypotheses g is constant on V) this implies g(p(t)) is
constant and again:

dp  ———\ _ d(g(p(t))
<% | gradg> == = 0.

Then grad f and grad g are orthogonal around (z¢,yo) on Vy to
the same vector, as we are in dimension 2 this implies that the
determinant of Jacobian matrix of (f, g) is zero around (x¢, yo)
on V). By extension D¢(g) =0 on V).

We now end the proof: If g is constant on infinitely many
irreducible components V) of (p — Ag = 0) this implies that
D¢(g) = 0 on infinitely many V). Then Dy(g) =0 in K(z,y).

O

3.2. Group of the divisors. Let f = §, let Ai,..., A\ € K, we
denote by G(f;A1,...,A,) the multiplicative group generated by all
the divisors of the polynomials p — \;q, e = 1,...,n.
Let
d(f) = (deg f)* + deg f.

Lemma 3.3. Let Fy,..., F. € G(f;M\1,...,\n). If r = d(f) then there
exists a collection of integers mq,...,m, (not all equal to zero) such
that

r

g=]]F" ey

=1
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Proof. Let pn ¢ {\1,..., A}, and let S be an irreducible component of
(p — g = 0). Let S be the projective closure of S. The functions F;
restricted to S have their poles and zeroes on the points at infinity of
S or on the intersection SN Z(F;) C Z(p) N Z(q).

Let n : S — S be a normalization of S. The inverse image under
normalisation of the points at infinity are denoted by {1, ..., v}, their
number verifies k£ < deg S < deg f.

At a point § € Z(p) N Z(q), the number of points of n~1(d) is the
local number of branches of S at § then it is less or equal than ords(.S),
where ords(S) denotes the order (or multiplicity) of S at § (see e.g.
[Sh], paragraph 11.5.3). Then

#n () < ords(S) < ords Z(p — pg) < ords Z(p — pq) - ords Z(p)
< mults(p — pg, p) = mults(p, q)

where mults(p, ¢) is the intersection multiplicity (see e.g. [Fu]). Then
by Bézout theorem:

Y o #nTN e < ) multy(pq) < degp - degq < (deg f).
s€Z(p)NZ(q) d€Z(p)nZ(q)

Then the inverse image under normalisation of Ul_; SNZ(F;) denoted
by {Vki1, - - -,7e} have less or equal than (deg f)? elements. Notice that
¢ < deg f+ (deg f)* = d(f).

Now let v;; be the order of F; at v; (1 = 1,...,7m; j = 1,...,0).
Consider the matrix M = (v;;). Because the degree of the divisor
(F};) (seen over S) is zero we get Z§:1 vij = 0, for i = 1,...,r, that
means that columns of M are linearly dependent. Then rk M < ¢ <
d(f), by hypothesis r > d(f), then the rows of M are also linearly
dependent. Let mq(u, S), ..., m,(p,S) such that Y7, m;(p, S)vi; =0,
j=1,...,¢.

Consider the function ¢, s = [[;_; Fimi(k’s). Then this function is
regular and does not have zeroes or poles at the points 7;, because
>oi_ymi(p, S)vi; = 0. Then g, ¢ is constant on S.

This construction gives a map (i, S) — (mi(u,S),...,m.(u,S))
from K to Z". Since K is uncountable, there exists infinitely many
(p, S) with the same (my, ..., m,). Then the function g = [[;_, F;™ is
constant on infinitely many components of curves of (p — ug = 0) and
by Lemma 3.1 this implies g € C. O

3.3. Non-composite rational function. Let f = E. Let G(f) be
the multiplicative group generated by all divisors of the polynomials
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p—Ag for all A € K. In fact we have
GH= U GUra.. ).

Definition 3.4. A family F, ..., F. € G(f) is f-free if (mq,...,m,) €
Z" is such that [[;_, F{" € Cf then (mq,...,m,) = (0,...,0).

A f-free family Fy,..., F. € G(f) is f-mazimal if for all F' € G(f),
{F\,...,F., F} is not f-free.

Theorem 3.5. Let f € K(z,y), deg f > 0. Then the following condi-
tions are equivalent:

(1) deg f =min{degg | g € C; \ K},
(2) o(f) is finite;
(3) Cp = K(f);

(4) f is non-composite.

Remark 3.6. This does not give a new proof of “o(f) is finite < f is
non-composite” because we use Bertini-Krull theorem.

Remark 3.7. The proof (1) = (2) is somewhat easier than in [St],
whereas (2) = (3) is more difficult.

Proof.

e (1) = (2). Let us suppose that o(f) is infinite. Set f = Z,
with ged(p,¢) = 1. For all a € o(f), let F,, be an irreducible
divisor of p — aq, such that deg F, < deg f. By Lemma 3.3
there exists a f-maximal family {Fi,..., F.} with r < d(f).
Moreover r > 1 because {F,} is f-free: if not there exists k # 0
such that F* € C; then F, € Cy, but degF, < deg f that
contradicts the hypothesis of minimality.

Now the collection {F7, ..., F,, F,} isnot f-free, so that there
exist integers {my(a),...,m,(a), m(a)}, with m(a) # 0, such
that

Flml(a) o Fe) ) e o

Since o(f) is infinite then is equal to K minus a finite number of
values (see Theorem 2.2) then o( f) is uncountable and the map
a— (my(a),...,m.(a),m(a)) is not injective. Let o # [ such
that m;(a) = m(8) =my, i =1,...,r and m(a) = m(5) = m.
Then F{™ ... F™ . F™ € Cy and F{™ ... F™ . F' € Cy, it
implies that (F,,/Fg)™ € Cy, therefore F,/Fs € Cy.

Now deg ?—; < deg f, then by the hypothesis of minimality it

proves ?—g is a constant. Let a € K* such that I, = afF}p, by
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definition F, divides p — aq, but moreover F, divides p— 3q (as
Fj do). Then as F, divides both p — aq and p — ¢, F, divides
p and ¢, that contradicts ged(p, q) = 1.
® (2) = (3). Let f = £, o(f) finite and g € C'y, we aim at proving
that g € K(f). The proof will be done in several steps:
(a) Reduction to the case g = ;. Let g = 3 € Cy, then f and g
are algebraically dependent, then there exists a polynomial
in f and g that vanishes. As before let us write

Z Rz‘(f)gi =0
i=0

Rl(—) (—) =0, hence Ri(—>ulv” t=0.
)G 2 (,

By multiplication by ¢¢ for d = max{deg R;} (in order that
all qdRZ-(g) are polynomials) we get:

"R, <§>u" = (—qan1 (%))u”l — ) .

As ged(u,v) = 1 then v divides the polynomial qan(g);

where R;(t) € K[t]. As f =2, g=1 then

3

1=0

we write vu’ = qan(g) then

U wu
v

PR.(2)

But R,(2) € K(2) then Y4 € Cf, but also we have that
q q q

g € K(f) if and only if 12—15/ € K(f). This proves the
reduction.

(b) Reduction to the case g = qu. Let g = 7 € Cp, £ >0. As
o(f) is finite by Lemma 3.1 we choose A € K such that
p — Aq is irreducible and g € Cy is constant (equal to ¢) on
p—Ag. Asg= ;7,We have p — \q divides u — cq*. We can
write:

g:

u—cq' =u'(p—Aq).
Then
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As o and f = § are in Cy we get q?—ll € Cy; moreover
% € K(f) if and only if qf—:l € K(f). By induction on
> 0 this prove the reduction.

(c) Reduction to the case g = q. Let g = qu € Cy. g is
constant along the irreducible curve (p — A¢g = 0). Then
qu = ui(p — \q) + c1.

Let degp = degq. Then ¢"u" = ul(p" — A\¢") (where P"
denotes the homogeneous part of higher degree of the poly-
nomial P). Then p" — \¢" divides ¢"u" for infinitely many
A € K. As ged(p, q) = 1 this gives a contradiction.

Hence degp # degq. We may assume degp > degq (oth-
erwise qu € Cy and § € Cy implies pu € Cf). Then we
write:

[NV}

qu = QU1<§ - )\> +Cla

that proves that qu; € Cy and that qu € K(f) if and only
if qu; € K(f). The inequality degp > degq implies that
degu; < degu. We continue by induction, qu; = qu2(§ —
A) + co, with deguy < deguy,..., until we get degu,, = 0
that is u, € K*. Thus we have prove firstly that qu,, € Cy,
that is to say ¢ € Cy, and secondly that qu € K(f) if and
only if ¢ € K(f).

(d) Case g = q. 1If ¢ € C then ¢ is constant along the irre-
ducible curve (p — Ag = 0) then ¢ = a(p— \q) + ¢, a € K*.
Then

= e eK(S) — K(f).

ars| O

e (3) = (4). Let us assume that Cy = K(f) and that f is com-

posite, then there exist r € K(t), degr > 2 and g € K(x,y)
such that f = r o g. By the formula deg f = degr - degyg
we get deg f > degg. Now if r = 3 then we have a relation
b(g)f = a(g), then f and g are algebraically dependent, hence
by Lemma 3.1, g € Cy. As Cy = K(f), there exists s € K(t)
such that ¢ = so f. Then degg > deg f. That yields to a
contradiction.

(4) = (1). Assume that f is non-composite and let g € Cy
of minimal degree. By Corollary 3.2 we get Cy = C, then
degg = min{degh | h € C,; \ K}. Then by the already proved
implication (1) = (3) for g, we get Cy; = K(g). Then f € Cy =
C, = K(g), then there exists r € K(t) such that f =ro g, but
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as f is non-composite then degr = 1, hence deg f = degg =
min {degh | h € C; \ K}.
O

4. ORDER OF REDUCIBILITY OF RATIONAL FUNCTIONS IN TWO
VARIABLES

Let f = § € K(x,y); for all A € K, let ny be the number of irre-
ducible components of p — A\q. Let

p(f) =) (na—1).

AeK

By Theorem 2.2, p(f) is finite if and only if f is non-composite. We
give a bound for p(f). Recall that we defined:

d(f) = (deg f)* + deg f.

Theorem 4.1. Let K be an algebraic closed field of characteristic 0.
If f € K(x,y) is non-composite then

p(f) < d(f).

Proof. First notice that K can be supposed uncountable, otherwise it
can be embedded into an uncountable field L and the spectrum in K
would be included in the spectrum in L.

Let us assume that f is non-composite, then by Theorem 2.2 and its
corollary we have that o(f) is finite: o(f) = {A1,..., \.}. We suppose
that p(f) > d(f). Let f = §. We decompose the polynomials p — \;q
in irreducible factors, for i = 1,...,r:

p— )\1(] = HF’i,j,]a
j=1

where n; stands for n,,. Notice that since ged(p,q) = 1 then F;; di-
vides p — \;q but do not divides any of p — uq, u # A;. The collection
{Fi1,....,Fin—1,.. . Fr1,...,Frp 1}, is included in G(f, A1,..., \)
and contains p(f) > d(f) elements, then Lemma 3.3 provides a collec-
tions {my1,. .., M1y 15y Mp1y- .., Myp 1} of integers (not all equal
to 0) such that

r n;—1

(1) g=1I1I 5" ¢y

i=1 j=1

By Theorem 3.5 it implies that ¢ € K(f), then g = ZE]{;, where

u,v € K[t]. Let py, ..., p be the roots of u and piyyq, ..., pe the roots
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of v. Then .
g = U(g) . Hi:1§_,ui
= = 7
U(g) Hi:k+1 Z?; — M
so that
k
2) g= ozqef% [[imip — g .

[limia P — 1g
If my;, j, # 0 then by the definition of ¢ by equation (1) and by
equation (2), we get that Fj, j, divides one of the p — u;q or divides
q. If F, ;, divides p — p;q then p; = Xy € o(f). If F,;, divides ¢
then p; = oo, so that oo € o(f). In both cases p — \;,¢ appears in
formula (2) at the numerator or at the denominator of g. Then Fj,
should appears in decomposition (1), that gives a contradiction. Then

p(f) < d(f). O

5. EXTENSION TO SEVERAL VARIABLES

We follows the lines of the proof of [Na3]. We will need a result that
claims that the irreducibility and the degree of a family of polynomials
remain constant after a generic linear change of coordinates. For x =
(1,...,2,) and a matrix B = (b;;) € GI,(K), we denote the new
coordinates by B - x:

B - xr = (Z bljxja ey Z bnjl‘j).
i=1 i=1

Proposition 5.1. Let K be an infinite field. Letn > 3 andpy,...,ps €
Klxq,...,x,) be irreducible polynomials. Then there ezists a matric
B € Gl,(K) such that for alli=1,...,{ we get:

e p;(B - z) is irreducible in K(x1)[xg, ..., x,];

The proof of this proposition can be derived from [Sm, Ch. 5, Th.
3D] or by using [FJ, Prop. 9.31]. See [Na3] for details.

Now we return to our main result.

Theorem 5.2. Let K be an algebraically closed field of characteristic
0. Let f € K(z) be non-composite then p(f) < (deg f)* + deg f.

Proof. We will prove this theorem by induction on the number n of
variables. For n = 2, we proved in Theorem 4.1 that p(f) < (deg f)*+

deg f.
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Let f = § € K(z), with z = (21,...,x,). We suppose that f is non-
composite. For each A € o(f) we decompose p — A\g into irreducible
factors:

LD
(3) p—re= ][]y
i=1

We fix u ¢ o(f). We apply Proposition 5.1 to the polynomials p— ug
and F)y;, for all A € o(f) and all i = 1,...,n,. Then the polynomials
p(B-z)—pq(B-z) and F\ ;(B-z) are irreducible in K (z1)[x, ..., x,] and
their degrees in (zo, ..., x,) are equals to the degrees in (x1,...,z,) of
p— pq and F ;.

Let denote by k = K (x1). This is an uncountable field, algebraically
closed of characteristic zero. Now p(B - x) — ug(B - z) is irreducible,
then f(B - z) is non-composite in k(xq, ..., z,).

Now equation (3) become:

p(B-z)—X\g(B-x) HFMB )™

Which is the decomposition of p(B - z) — Ag(B - z) into irreducible
factors in k(xo,...,x,). Then

o(f) Co(f(B-x)),

where o(f) is asubset of K, and o(f(B-z)) is asubset of k = K (x1). As
ny is also the number of distinct irreducible factors of p(B-z) —Aq(B-x)
we get:

p(f) < p(f(B-z)).
Now suppose that the result is true for n — 1 variables. Then for
f(B-x) € k(xg,...,x,) we get:

p(f(B-x)) < (degy,

Hence:

25000y =77 N E\Fayeenrn

------

(
- (deg(ﬂﬁl Tn) f) (deg
(

-----

>f)

,,,,,,,,,,
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If for n = 2 we start the induction with Lorenzini’s bound p(f) <
(deg f)? we obtain with the same proof the following result for several
variables, for K of any characteristic K and a better bound:

Theorem 5.3. Let K be an algebraically closed field. Let f € K(x) be
non-composite then p(f) < (deg f)?.

[Ru]
[Sc]
[Sm]

[Sh]
[St]

Vi
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