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Abstract. We prove a analogous of Stein theorem for rational
functions in several variables: we bound the number of reducible
fibers by a formula depending on the degree of the fraction.

1. Introduction

Let K be an algebraically closed field. Let f = p
q
∈ K(x), with

x = (x1, . . . , xn), n > 2 and gcd(p, q) = 1, the degree of f is deg f =
max{deg p, deg q}. We associate to a fraction f = p

q
the pencil p− λq,

λ ∈ K̂ (where we denote K̂ = K ∪ {∞} and by convention if λ = ∞
then p− λq = q).

For each λ ∈ K̂ write the decomposition into irreducible factors:

p− λq =

nλ∏
i=1

F ri
i .

The spectrum of f is σ(f) = {λ ∈ K̂ | nλ > 1}, and the order of
reducibility is ρ(f) =

∑
λ∈K̂(nλ − 1).

A fraction f is composite if it is the composition of a univariate
rational fraction of degree more than 1 with another rational function.

Theorem 1.1. Let K be an algebraically closed field of characteristic
0. Let f ∈ K(x) be non-composite then

ρ(f) < (deg f)2 + deg f.

A theorem of Bertini and Krull implies that if f is non-composite
then σ(f) is finite and we should notice that #σ(f) 6 ρ(f). Later
on, for an algebraically closed field of characteristic zero and for a
polynomial f ∈ K[x, y], Stein [St] proved the formula ρ(f) < deg f .
This formula has been generalized in several directions, see [Na1] for
references. For a rational function f ∈ C(x, y) a consequence of the
work of Ruppert [Ru] on pencil of curves, is that #σ(f) < (deg f)2. For
K algebraically closed (of any characteristic) and f ∈ K(x, y) Lorenzini
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[Lo] proved under geometric hypotheses on the pencil (p − λq) that
ρ(f) < (deg f)2. This has been generalized by Vistoli [Vi] for a pencil
in several variables for an algebraically closed field of characteristic 0.

Let us give an example extracted from [Lo]. Let f(x, y) = x3+y3+(1+x+y)3

xy(1+x+y)
,

then deg(f) = 3 and σ(f) = {1, j, j2,∞} (where {1, j, j2} are the third
roots of unity). For λ ∈ σ(f), (f = λ) is composed of three lines hence
ρ(f) = 8 = (deg f)2 − 1. Then Lorenzini’s bound is optimal in two
variables.

The motivation of this work is that we develop the analogous theory
of Stein for rational function: composite fractions, kernels of Jacobian
derivatives, groups of divisors,... The method for the two variables case
is inspired from the work of Stein [St] and the presentation of that work
by Najib [Na1]. For completeness even the proofs similar to the ones of
Stein have been included. Another motivation is that with a bit more
effort we get the case of several variables by following the ideas of [Na1]
(see the articles [Na2], [Na3]).

In §2 we prove that a fraction is non-composite if and only its spec-
trum is finite. Then in §3 we introduce a theory of Jacobian derivation
and compute the kernel. Next in §4 we prove that for a non-composite
fraction in two variables ρ(f) < (deg f)2 + deg f . Finally in §5 we
extend this formula to several variables and we end by stating a result
for fields of any characteristic.

Acknowledgements: I wish to thank Pierre Dèbes and Salah Najib
for discussions and encouragements.

2. Composite rational functions

Let K be an algebraically closed field. Let x = (x1, . . . , xn), n > 2.

Definition 2.1. A rational function f ∈ K(x) is composite if there exist
g ∈ K(x) and r ∈ K(t) with deg r > 2 such that

f = r ◦ g.
Theorem 2.2. Let f = p

q
∈ K(x). The following assertions are equiv-

alent:

(1) f is composite;

(2) p−λq is reducible in K[x] for all λ ∈ K̂ such that deg p−λq =
deg f ;

(3) p− λq is reducible in K[x] for infinitely many λ ∈ K̂.

Before proving this result we give two corollaries.

Corollary 2.3. f is non-composite if and only if its spectrum σ(f) is
finite.
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One aim of this paper is to give a bound for σ(f). The hard impli-
cation of this theorem (3) ⇒ (1) is in fact a reformulation of a theorem
of Bertini and Krull.

We also give a nice application pointed out to us by P. Débes:

Corollary 2.4. Let p ∈ K[x] irreducible. Let q ∈ K[x] with deg q <
deg p and gcd(p, q) = 1. Then for all but finitely many λ ∈ K, p− λq
is irreducible in K[x].

Convention : When we define a fraction F = P
Q

we will assume that

gcd(P,Q) = 1.

We start with the easy part of Theorem 2.2:

Proof. (2) ⇒ (3) is trivial. Let us prove (1) ⇒ (2). Let f = p
q

be a

composite rational function. There exist g = u
v
∈ K(x) and r ∈ K(t)

with k = deg r > 2 such that f = r ◦ g . Let us write r = a
b
. Let

λ ∈ K̂ such that deg a − λb = deg r and factorize a(t) − λb(t) =
α(t− t1)(t− t2) · · · (t− tk), α ∈ K∗, t1, . . . , tk ∈ K. Then

p− λq = q · (f − λ) = q ·
(
a− λb

b

)
(g) = αq

(g − t1) · · · (g − tk)

b(g)
.

Then by multiplication by vk at the numerator and denominator we
get:

(p− λq) · (vkb(g)) = αq(u− t1v) · · · (u− tkv),

which is a polynomial identity. As gcd(a, b) = 1, gcd(u, v) = 1 and
gcd(p, q) = 1 then u − t1v, . . . , u − tkv divide p − λq. Hence p − λq is
reducible in K[x]. �

Let us reformulate the Bertini-Krull theorem in our context from [Sc,
Theorem 37]. It will enable us to end the proof of Theorem 2.2.

Theorem 2.5 (Bertini, Krull). Let F (x, λ) = p(x) − λq(x) ∈ K[x, λ]
an irreducible polynomial. Then the following conditions are equivalent:

(1) F (x, λ0) ∈ K[x] is reducible for all λ0 ∈ K such that degx F (x, λ0) =
degx F .

(2) (a) either there exist φ, ψ ∈ K[x] with degx F > max{deg φ, degψ},
and ai ∈ K[λ], such that

F (x, λ) =
n∑
i=0

ai(λ)φ(x)n−iψ(x)i;

(b) or char(K) = π > 0 and F (x, λ) ∈ K[xπ, λ], where xπ =
(xπ1 , . . . , x

π
n).
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We now end the proof of Theorem 2.2:

Proof. (3) ⇒ (1) Suppose that p − λ0q is reducible in K[x] for in-

finitely many λ0 ∈ K̂; then it is reducible for all λ0 ∈ K such that
degx F (x, λ0) = degx F (see Corollary 3 of Theorem 32 of [Sc]). We
apply Bertini-Krull theorem:

Case (a): F (x, λ) = p(x)− λq(x) can be written:

p(x)− λq(x) =
n∑
i=0

ai(λ)φ(x)n−iψ(x)i.

So we may suppose that for i = 1, . . . , n, degλ ai = 1, let us write
ai(λ) = αi − λβi, αi, βi ∈ K. Then

p(x) =
n∑
i=0

αiφ(x)n−iψ(x)i = φn
n∑
i=0

αi

(ψ
φ

)i
(x),

and

q(x) =
n∑
i=0

βiφ(x)n−iψ(x)i = φn
n∑
i=0

βi

(ψ
φ

)i
(x).

If we set g(x) = ψ(x)
φ(x)

∈ K[x], and r(t) =
Pn

i=0 αit
iPn

i=0 βiti
then p

q
(x) = r ◦ g.

Moreover as degx F > max{deg φ, degψ} this implies n > 2 so that
deg r > 2. Then p

q
= f = r ◦ g is a composite rational function

Case (b): Let π = char(K) > 0 and F (x, λ) = p(x) − λq(x) ∈
K[xπ, λ], For λ = 0 it implies that p(x) = P (xπ), then there exists
p′ ∈ K[x] such that p(x) = (p′(x))π. For λ = −1 we obtain s′ ∈ K[x]
such that p(x) + q(x) = (s′(x))π. Then q(x) = (p(x) + q(x))− p(x) =
(s′(x))π − (p′(x))π = (s′(x)− p′(x))π. Then if we set q′ = s′ − p′

we obtain q(x) = (q′(x))π. Now set r(t) = tπ and g = p′

q′
we get

f = p
q

=
(
p′

q′

)π
= r ◦ g. �

3. Kernel of the Jacobian derivation

We now consider the two variables case and K is an uncountable
algebraically closed field of characteristic zero.

3.1. Jacobian derivation. Let f, g ∈ K(x, y), the following formula:

Df (g) =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
,

defines a derivation Df : K(x, y) → K(x, y). Notice the Df (g) is the
determinant of the Jacobian matrix of (f, g). We denote by Cf the
kernel of Df :

Cf = {g ∈ K(x, y) | Df (g) = 0} .
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Then Cf is a subfield of K(x, y). We have the inclusion K(f) ⊂ Cf .
Moreover if gk ∈ Cf , k ∈ Z \ {0} then g ∈ Cf .

Lemma 3.1. Let f = p
q
, g ∈ K(x, y). The following conditions are

equivalent:

(1) g ∈ Cf ;
(2) f and g are algebraically dependent;
(3) g is constant on irreducible components of the curves (p−λq =

0) for all but finitely many λ ∈ K̂;
(4) g is constant on infinitely many irreducible components of the

curves (p− λq = 0), λ ∈ K̂.

Corollary 3.2. If g ∈ Cf is not a constant then Cf = Cg.

Proof.

• (1) ⇔ (2). We follow the idea of [Na1] instead of [St]. f and
g are algebraically dependent if and only transcKK(f, g) = 1.
And transcKK(f, g) = 1 if and only the rank of the Jacobian
matrix of (f, g) is less or equal to 1, which is equivalent to
g ∈ Cf .

• (2) ⇒ (3). Let f and g be algebraically dependent. Then there
exists a two variables polynomial in f and g that vanishes. Let
us write

n∑
i=0

Ri(f)gi = 0

where Ri(t) ∈ K[t]. Let us write f = p
q
, g = u

v
and Rn(t) =

α(t− λ1) · · · (t− λm). Then

n∑
i=0

Ri

(p
q

) (u
v

)i
= 0, hence

n∑
i=0

Ri

(p
q

)
uivn−i = 0.

By multiplication by qd for d = max{degRi} (in order that
qdRi(

p
q
) are polynomials) we obtain

qdRn

(p
q

)
un = v

(
−qdRn−1

(p
q

)
un−1 − · · ·

)
.

As gcd(u, v) = 1 then v divides the polynomial qdRn(
p
q
), then v

divides qd−m(p−λ1q) · · · (p−λmq). Then all irreducible factors
of v divide q or p− λiq, i = 1, . . . ,m.

Let λ /∈ {∞, λ1, . . . , λm}. Let Vλ be an irreducible component
of p−λq, then Vλ∩Z(v) is zero dimensional (or empty). Hence
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v is not identically equal to 0 on Vλ. Then for all but finitely
many (x, y) ∈ Vλ we get:

n∑
i=0

Ri(λ)g(x, y)i = 0.

Therefore g can only reach a finite number of values c1, . . . , cn
(the roots of

∑n
i=0Ri(λ)ti). Since Vλ is irreducible, g is constant

on Vλ.
• (3) ⇒ (4). Clear.
• (4) ⇒ (1). We first give a proof that if g is constant along an

irreducible component Vλ of (p−λq = 0) then Df (g) = 0 on Vλ
(we suppose that Vλ is not in the poles of g). Let (x0, y0) ∈ Vλ
and t 7→ p(t) be a local parametrization of Vλ around (x0, y0).
By definition of p(t) we have f(p(t)) = λ, this implies that:〈

dp

dt
| grad f

〉
=
d(f(p(t))

dt
= 0

and by hypotheses g is constant on Vλ this implies g(p(t)) is
constant and again:〈

dp

dt
| grad g

〉
=
d(g(p(t))

dt
= 0.

Then grad f and grad g are orthogonal around (x0, y0) on Vλ to
the same vector, as we are in dimension 2 this implies that the
determinant of Jacobian matrix of (f, g) is zero around (x0, y0)
on Vλ. By extension Df (g) = 0 on Vλ.

We now end the proof: If g is constant on infinitely many
irreducible components Vλ of (p − λq = 0) this implies that
Df (g) = 0 on infinitely many Vλ. Then Df (g) = 0 in K(x, y).

�

3.2. Group of the divisors. Let f = p
q
, let λ1, . . . , λn ∈ K̂, we

denote by G(f ;λ1, . . . , λn) the multiplicative group generated by all
the divisors of the polynomials p− λiq, i = 1, . . . , n.

Let
d(f) = (deg f)2 + deg f.

Lemma 3.3. Let F1, . . . , Fr ∈ G(f ;λ1, . . . , λn). If r > d(f) then there
exists a collection of integers m1, . . . ,mr (not all equal to zero) such
that

g =
r∏
i=1

Fmi
i ∈ Cf .
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Proof. Let µ /∈ {λ1, . . . , λn}, and let S be an irreducible component of
(p − µq = 0). Let S̄ be the projective closure of S. The functions Fi
restricted to S̄ have their poles and zeroes on the points at infinity of
S or on the intersection S ∩ Z(Fi) ⊂ Z(p) ∩ Z(q).

Let n : S̃ → S̄ be a normalization of S̄. The inverse image under
normalisation of the points at infinity are denoted by {γ1, . . . , γk}, their
number verifies k 6 degS 6 deg f .

At a point δ ∈ Z(p) ∩ Z(q), the number of points of n−1(δ) is the
local number of branches of S at δ then it is less or equal than ordδ(S),
where ordδ(S) denotes the order (or multiplicity) of S at δ (see e.g.
[Sh], paragraph II.5.3). Then

#n−1(δ) 6 ordδ(S) 6 ordδ Z(p− µq) 6 ordδ Z(p− µq) · ordδ Z(p)

6 multδ(p− µq, p) = multδ(p, q)

where multδ(p, q) is the intersection multiplicity (see e.g. [Fu]). Then
by Bézout theorem:∑
δ∈Z(p)∩Z(q)

#n−1(δ) 6
∑

δ∈Z(p)∩Z(q)

multδ(p, q) 6 deg p · deg q 6 (deg f)2.

Then the inverse image under normalisation of ∪ri=1S∩Z(Fi) denoted
by {γk+1, . . . , γ`} have less or equal than (deg f)2 elements. Notice that
` 6 deg f + (deg f)2 = d(f).

Now let νij be the order of Fi at γj (i = 1, . . . , r; j = 1, . . . , `).
Consider the matrix M = (νij). Because the degree of the divisor

(Fi) (seen over S̃) is zero we get
∑`

j=1 νij = 0, for i = 1, . . . , r, that
means that columns of M are linearly dependent. Then rkM < ` 6
d(f), by hypothesis r > d(f), then the rows of M are also linearly
dependent. Let m1(µ, S), . . . ,mr(µ, S) such that

∑r
i=1mi(µ, S)νij = 0,

j = 1, . . . , `.

Consider the function gµ,S =
∏r

i=1 F
mi(λ,S)
i . Then this function is

regular and does not have zeroes or poles at the points γj, because∑r
i=1mi(µ, S)νij = 0. Then gµ,S is constant on S.
This construction gives a map (µ, S) 7→ (m1(µ, S), . . . ,mr(µ, S))

from K to Zr. Since K is uncountable, there exists infinitely many
(µ, S) with the same (m1, . . . ,mr). Then the function g =

∏r
i=1 F

mi
i is

constant on infinitely many components of curves of (p− µq = 0) and
by Lemma 3.1 this implies g ∈ Cf . �

3.3. Non-composite rational function. Let f = p
q
. Let G(f) be

the multiplicative group generated by all divisors of the polynomials
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p− λq for all λ ∈ K̂. In fact we have

G(f) =
⋃

(λ1,...,λn)∈Kn

G(f ;λ1, . . . , λn).

Definition 3.4. A family F1, . . . , Fr ∈ G(f) is f -free if (m1, . . . ,mr) ∈
Zr is such that

∏r
i=1 F

mi
i ∈ Cf then (m1, . . . ,mr) = (0, . . . , 0).

A f -free family F1, . . . , Fr ∈ G(f) is f -maximal if for all F ∈ G(f),
{F1, . . . , Fr, F} is not f -free.

Theorem 3.5. Let f ∈ K(x, y), deg f > 0. Then the following condi-
tions are equivalent:

(1) deg f = min {deg g | g ∈ Cf \K};
(2) σ(f) is finite;
(3) Cf = K(f);
(4) f is non-composite.

Remark 3.6. This does not give a new proof of “σ(f) is finite ⇔ f is
non-composite” because we use Bertini-Krull theorem.

Remark 3.7. The proof (1) ⇒ (2) is somewhat easier than in [St],
whereas (2) ⇒ (3) is more difficult.

Proof.

• (1) ⇒ (2). Let us suppose that σ(f) is infinite. Set f = p
q
,

with gcd(p, q) = 1. For all α ∈ σ(f), let Fα be an irreducible
divisor of p − αq, such that degFα < deg f . By Lemma 3.3
there exists a f -maximal family {F1, . . . , Fr} with r 6 d(f).
Moreover r > 1 because {Fα} is f -free: if not there exists k 6= 0
such that F k

α ∈ Cf then Fα ∈ Cf , but degFα < deg f that
contradicts the hypothesis of minimality.

Now the collection {F1, . . . , Fr, Fα} is not f -free, so that there
exist integers {m1(α), . . . ,mr(α),m(α)}, with m(α) 6= 0, such
that

F
m1(α)
1 · · ·Fmr(α)

r · Fm(α)
α ∈ Cf .

Since σ(f) is infinite then is equal to K̂ minus a finite number of
values (see Theorem 2.2) then σ(f) is uncountable and the map
α 7→ (m1(α), . . . ,mr(α),m(α)) is not injective. Let α 6= β such
that mi(α) = mi(β) = mi, i = 1, . . . , r and m(α) = m(β) = m.
Then Fm1

1 · · ·Fmr
r · Fm

α ∈ Cf and Fm1
1 · · ·Fmr

r · Fm
β ∈ Cf , it

implies that (Fα/Fβ)
m ∈ Cf , therefore Fα/Fβ ∈ Cf .

Now deg Fα

Fβ
< deg f , then by the hypothesis of minimality it

proves Fα

Fβ
is a constant. Let a ∈ K∗ such that Fα = aFβ, by
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definition Fα divides p−αq, but moreover Fα divides p−βq (as
Fβ do). Then as Fα divides both p−αq and p− βq, Fα divides
p and q, that contradicts gcd(p, q) = 1.

• (2) ⇒ (3). Let f = p
q
, σ(f) finite and g ∈ Cf , we aim at proving

that g ∈ K(f). The proof will be done in several steps:
(a) Reduction to the case g = u

q` . Let g = u
v
∈ Cf , then f and g

are algebraically dependent, then there exists a polynomial
in f and g that vanishes. As before let us write

n∑
i=0

Ri(f)gi = 0

where Ri(t) ∈ K[t]. As f = p
q
, g = u

v
then

n∑
i=0

Ri

(p
q

) (u
v

)i
= 0, hence

n∑
i=0

Ri

(p
q

)
uivn−i = 0.

By multiplication by qd for d = max{degRi} (in order that
all qdRi(

p
q
) are polynomials) we get:

qdRn

(p
q

)
un = v

(
−qdRn−1

(p
q

)
un−1 − · · ·

)
.

As gcd(u, v) = 1 then v divides the polynomial qdRn(
p
q
);

we write vu′ = qdRn(
p
q
) then

g =
u

v
=

uu′

qdRn(
p
q
)
.

But Rn(
p
q
) ∈ K(p

q
) then uu′

qd ∈ Cf , but also we have that

g ∈ K(f) if and only if uu′

qd ∈ K(f). This proves the

reduction.
(b) Reduction to the case g = qu. Let g = u

q` ∈ Cf , ` > 0. As

σ(f) is finite by Lemma 3.1 we choose λ ∈ K such that
p−λq is irreducible and g ∈ Cf is constant (equal to c) on
p− λq. As g = u

q` ,we have p− λq divides u− cq`. We can
write:

u− cq` = u′(p− λq).

Then
u

q`
=

u′

q`−1

(p
q
− λ

)
+ c.
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As u
q` and f = p

q
are in Cf we get u′

q`−1 ∈ Cf ; moreover
u
q` ∈ K(f) if and only if u′

q`−1 ∈ K(f). By induction on

` > 0 this prove the reduction.
(c) Reduction to the case g = q. Let g = qu ∈ Cf . g is

constant along the irreducible curve (p − λq = 0). Then
qu = u1(p− λq) + c1.
Let deg p = deg q. Then qhuh = uh1(p

h − λqh) (where P h

denotes the homogeneous part of higher degree of the poly-
nomial P ). Then ph− λqh divides qhuh for infinitely many
λ ∈ K. As gcd(p, q) = 1 this gives a contradiction.
Hence deg p 6= deg q. We may assume deg p > deg q (oth-
erwise qu ∈ Cf and p

q
∈ Cf implies pu ∈ Cf ). Then we

write:

qu = qu1

(p
q
− λ

)
+ c1,

that proves that qu1 ∈ Cf and that qu ∈ K(f) if and only
if qu1 ∈ K(f). The inequality deg p > deg q implies that
deg u1 < deg u. We continue by induction, qu1 = qu2(

p
q
−

λ) + c2, with deg u2 < deg u1,..., until we get deg un = 0
that is un ∈ K∗. Thus we have prove firstly that qun ∈ Cf ,
that is to say q ∈ Cf , and secondly that qu ∈ K(f) if and
only if q ∈ K(f).

(d) Case g = q. If q ∈ Cf then q is constant along the irre-
ducible curve (p− λq = 0) then q = a(p− λq) + c, a ∈ K∗.
Then

q =
c

1− a(p
q
− λ)

∈ K
(p
q

)
= K(f).

• (3) ⇒ (4). Let us assume that Cf = K(f) and that f is com-
posite, then there exist r ∈ K(t), deg r > 2 and g ∈ K(x, y)
such that f = r ◦ g. By the formula deg f = deg r · deg g
we get deg f > deg g. Now if r = a

b
then we have a relation

b(g)f = a(g), then f and g are algebraically dependent, hence
by Lemma 3.1, g ∈ Cf . As Cf = K(f), there exists s ∈ K(t)
such that g = s ◦ f . Then deg g > deg f . That yields to a
contradiction.

• (4) ⇒ (1). Assume that f is non-composite and let g ∈ Cf
of minimal degree. By Corollary 3.2 we get Cf = Cg, then
deg g = min {deg h | h ∈ Cg \K}. Then by the already proved
implication (1) ⇒ (3) for g, we get Cg = K(g). Then f ∈ Cf =
Cg = K(g), then there exists r ∈ K(t) such that f = r ◦ g, but
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as f is non-composite then deg r = 1, hence deg f = deg g =
min {deg h | h ∈ Cf \K}.

�

4. Order of reducibility of rational functions in two
variables

Let f = p
q
∈ K(x, y); for all λ ∈ K̂, let nλ be the number of irre-

ducible components of p− λq. Let

ρ(f) =
∑
λ∈K̂

(nλ − 1).

By Theorem 2.2, ρ(f) is finite if and only if f is non-composite. We
give a bound for ρ(f). Recall that we defined:

d(f) = (deg f)2 + deg f.

Theorem 4.1. Let K be an algebraic closed field of characteristic 0.
If f ∈ K(x, y) is non-composite then

ρ(f) < d(f).

Proof. First notice that K can be supposed uncountable, otherwise it
can be embedded into an uncountable field L and the spectrum in K
would be included in the spectrum in L.

Let us assume that f is non-composite, then by Theorem 2.2 and its
corollary we have that σ(f) is finite: σ(f) = {λ1, . . . , λr}. We suppose
that ρ(f) > d(f). Let f = p

q
. We decompose the polynomials p − λiq

in irreducible factors, for i = 1, . . . , r:

p− λiq =

ni∏
j=1

F
ki,j

i,j ,

where ni stands for nλi
. Notice that since gcd(p, q) = 1 then Fi,j di-

vides p− λiq but do not divides any of p− µq, µ 6= λi. The collection
{F1,1, . . . , F1,n1−1, . . . , Fr,1, . . . , Fr,nr−1}, is included in G(f, λ1, . . . , λr)
and contains ρ(f) > d(f) elements, then Lemma 3.3 provides a collec-
tions {m1,1, . . . ,m1,n1−1, . . . ,mr,1, . . . ,mr,nr−1} of integers (not all equal
to 0) such that

(1) g =
r∏
i=1

ni−1∏
j=1

F
mi,j

i,j ∈ Cf .

By Theorem 3.5 it implies that g ∈ K(f), then g = u(f)
v(f)

, where

u, v ∈ K[t]. Let µ1, . . . , µk be the roots of u and µk+1, . . . , µ` the roots
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of v. Then

g =
u(p

q
)

v(p
q
)

= α

∏k
i=1

p
q
− µi∏`

i=k+1
p
q
− µi

so that

(2) g = αq`−2k

∏k
i=1 p− µiq∏`

i=k+1 p− µiq
.

If mi0,j0 6= 0 then by the definition of g by equation (1) and by
equation (2), we get that Fi0,j0 divides one of the p − µiq or divides
q. If Fi0,j0 divides p − µiq then µi = λi0 ∈ σ(f). If Fi0,j0 divides q
then µi = ∞, so that ∞ ∈ σ(f). In both cases p − λi0q appears in
formula (2) at the numerator or at the denominator of g. Then Fi0,ni0

should appears in decomposition (1), that gives a contradiction. Then
ρ(f) < d(f). �

5. Extension to several variables

We follows the lines of the proof of [Na3]. We will need a result that
claims that the irreducibility and the degree of a family of polynomials
remain constant after a generic linear change of coordinates. For x =
(x1, . . . , xn) and a matrix B = (bij) ∈ Gln(K), we denote the new
coordinates by B · x:

B · x = (
n∑
j=1

b1jxj, . . . ,
n∑
j=1

bnjxj).

Proposition 5.1. Let K be an infinite field. Let n > 3 and p1, . . . , p` ∈
K[x1, . . . , xn] be irreducible polynomials. Then there exists a matrix
B ∈ Gln(K) such that for all i = 1, . . . , ` we get:

• pi(B · x) is irreducible in K(x1)[x2, . . . , xn];
• deg(x2,...,xn) pi(B · x) = deg(x1,...,xn) pi.

The proof of this proposition can be derived from [Sm, Ch. 5, Th.
3D] or by using [FJ, Prop. 9.31]. See [Na3] for details.

Now we return to our main result.

Theorem 5.2. Let K be an algebraically closed field of characteristic
0. Let f ∈ K(x) be non-composite then ρ(f) < (deg f)2 + deg f .

Proof. We will prove this theorem by induction on the number n of
variables. For n = 2, we proved in Theorem 4.1 that ρ(f) < (deg f)2 +
deg f .
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Let f = p
q
∈ K(x), with x = (x1, . . . , xn). We suppose that f is non-

composite. For each λ ∈ σ(f) we decompose p − λq into irreducible
factors:

(3) p− λq =

nλ∏
i=1

F
rλ,i

λ,i .

We fix µ /∈ σ(f). We apply Proposition 5.1 to the polynomials p−µq
and Fλ,i, for all λ ∈ σ(f) and all i = 1, . . . , nλ. Then the polynomials

p(B·x)−µq(B·x) and Fλ,i(B·x) are irreducible inK(x1)[x2, . . . , xn] and
their degrees in (x2, . . . , xn) are equals to the degrees in (x1, . . . , xn) of
p− µq and Fλ,i.

Let denote by k = K(x1). This is an uncountable field, algebraically
closed of characteristic zero. Now p(B · x) − µq(B · x) is irreducible,
then f(B · x) is non-composite in k(x2, . . . , xn).

Now equation (3) become:

p(B · x)− λq(B · x) =

nλ∏
i=1

Fλ,i(B · x)rλ,i .

Which is the decomposition of p(B · x) − λq(B · x) into irreducible
factors in k(x2, . . . , xn). Then

σ(f) ⊂ σ(f(B · x)),

where σ(f) is a subset ofK, and σ(f(B·x)) is a subset of k = K(x1). As
nλ is also the number of distinct irreducible factors of p(B ·x)−λq(B ·x)
we get:

ρ(f) 6 ρ(f(B · x)).
Now suppose that the result is true for n − 1 variables. Then for

f(B · x) ∈ k(x2, . . . , xn) we get:

ρ(f(B · x)) < (deg(x2,...,xn) f(B · x))2 + (deg(x2,...,xn) f(B · x)).

Hence:

ρ(f) 6 ρ(f(B · x))
< (deg(x2,...,xn) f(B · x))2 + (deg(x2,...,xn) f(B · x))
= (deg(x1,...,xn) f)2 + (deg(x1,...,xn) f)

= (deg f)2 + (deg f)

�
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If for n = 2 we start the induction with Lorenzini’s bound ρ(f) <
(deg f)2 we obtain with the same proof the following result for several
variables, for K of any characteristic K and a better bound:

Theorem 5.3. Let K be an algebraically closed field. Let f ∈ K(x) be
non-composite then ρ(f) < (deg f)2.
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114 (2004), 169–181.
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