REDUCIBILITY OF RATIONAL FUNCTIONS IN SEVERAL VARIABLES

ARNAUD BODIN

Abstract

We prove a analogous of Stein theorem for rational functions in several variables: we bound the number of reducible fibers by a formula depending on the degree of the fraction.

1. Introduction

Let K be an algebraically closed field. Let $f=\frac{p}{q} \in K(\underline{x})$, with $\underline{x}=\left(x_{1}, \ldots, x_{n}\right), n \geqslant 2$ and $\operatorname{gcd}(p, q)=1$, the degree of f is $\operatorname{deg} f=$ $\max \{\operatorname{deg} p, \operatorname{deg} q\}$. We associate to a fraction $f=\frac{p}{q}$ the pencil $p-\lambda q$, $\lambda \in \hat{K}$ (where we denote $\hat{K}=K \cup\{\infty\}$ and by convention if $\lambda=\infty$ then $p-\lambda q=q$).

For each $\lambda \in \hat{K}$ write the decomposition into irreducible factors:

$$
p-\lambda q=\prod_{i=1}^{n_{\lambda}} F_{i}^{r_{i}} .
$$

The spectrum of f is $\sigma(f)=\left\{\lambda \in \hat{K} \mid n_{\lambda}>1\right\}$, and the order of reducibility is $\rho(f)=\sum_{\lambda \in \hat{K}}\left(n_{\lambda}-1\right)$.

A fraction f is composite if it is the composition of a univariate rational fraction of degree more than 1 with another rational function.

Theorem 1.1. Let K be an algebraically closed field of characteristic 0 . Let $f \in K(\underline{x})$ be non-composite then

$$
\rho(f)<(\operatorname{deg} f)^{2}+\operatorname{deg} f .
$$

A theorem of Bertini and Krull implies that if f is non-composite then $\sigma(f)$ is finite and we should notice that $\# \sigma(f) \leqslant \rho(f)$. Later on, for an algebraically closed field of characteristic zero and for a polynomial $f \in K[x, y]$, Stein [St] proved the formula $\rho(f)<\operatorname{deg} f$. This formula has been generalized in several directions, see [Na1] for references. For a rational function $f \in \mathbb{C}(x, y)$ a consequence of the work of Ruppert [Ru] on pencil of curves, is that $\# \sigma(f)<(\operatorname{deg} f)^{2}$. For K algebraically closed (of any characteristic) and $f \in K(x, y)$ Lorenzini
[Lo] proved under geometric hypotheses on the pencil $(p-\lambda q)$ that $\rho(f)<(\operatorname{deg} f)^{2}$. This has been generalized by Vistoli [Vi] for a pencil in several variables for an algebraically closed field of characteristic 0 .

Let us give an example extracted from [Lo]. Let $f(x, y)=\frac{x^{3}+y^{3}+(1+x+y)^{3}}{x y(1+x+y)}$, then $\operatorname{deg}(f)=3$ and $\sigma(f)=\left\{1, j, j^{2}, \infty\right\}$ (where $\left\{1, j, j^{2}\right\}$ are the third roots of unity). For $\lambda \in \sigma(f),(f=\lambda)$ is composed of three lines hence $\rho(f)=8=(\operatorname{deg} f)^{2}-1$. Then Lorenzini's bound is optimal in two variables.

The motivation of this work is that we develop the analogous theory of Stein for rational function: composite fractions, kernels of Jacobian derivatives, groups of divisors,... The method for the two variables case is inspired from the work of Stein [St] and the presentation of that work by Najib [Na1]. For completeness even the proofs similar to the ones of Stein have been included. Another motivation is that with a bit more effort we get the case of several variables by following the ideas of [Na 1] (see the articles [Na2], [Na3]).

In $\S 2$ we prove that a fraction is non-composite if and only its spectrum is finite. Then in $\S 3$ we introduce a theory of Jacobian derivation and compute the kernel. Next in $\S 4$ we prove that for a non-composite fraction in two variables $\rho(f)<(\operatorname{deg} f)^{2}+\operatorname{deg} f$. Finally in $\S 5$ we extend this formula to several variables and we end by stating a result for fields of any characteristic.

Acknowledgements: I wish to thank Pierre Dèbes and Salah Najib for discussions and encouragements.

2. Composite rational functions

Let K be an algebraically closed field. Let $\underline{x}=\left(x_{1}, \ldots, x_{n}\right), n \geqslant 2$.
Definition 2.1. A rational function $f \in K(\underline{x})$ is composite if there exist $g \in K(\underline{x})$ and $r \in K(t)$ with $\operatorname{deg} r \geqslant 2$ such that

$$
f=r \circ g .
$$

Theorem 2.2. Let $f=\frac{p}{q} \in K(\underline{x})$. The following assertions are equivalent:
(1) f is composite;
(2) $p-\lambda q$ is reducible in $K[\underline{x}]$ for all $\lambda \in \hat{K}$ such that $\operatorname{deg} p-\lambda q=$ $\operatorname{deg} f$
(3) $p-\lambda q$ is reducible in $K[\underline{x}]$ for infinitely many $\lambda \in \hat{K}$.

Before proving this result we give two corollaries.
Corollary 2.3. f is non-composite if and only if its spectrum $\sigma(f)$ is finite.

One aim of this paper is to give a bound for $\sigma(f)$. The hard implication of this theorem $(3) \Rightarrow(1)$ is in fact a reformulation of a theorem of Bertini and Krull.

We also give a nice application pointed out to us by P. Débes:
Corollary 2.4. Let $p \in K[\underline{x}]$ irreducible. Let $q \in K[\underline{x}]$ with $\operatorname{deg} q<$ $\operatorname{deg} p$ and $\operatorname{gcd}(p, q)=1$. Then for all but finitely many $\lambda \in K, p-\lambda q$ is irreducible in $K[\underline{x}]$.

Convention: When we define a fraction $F=\frac{P}{Q}$ we will assume that $\operatorname{gcd}(P, Q)=1$.

We start with the easy part of Theorem 2.2:
Proof. (2) \Rightarrow (3) is trivial. Let us prove (1) \Rightarrow (2). Let $f=\frac{p}{q}$ be a composite rational function. There exist $g=\frac{u}{v} \in K(\underline{x})$ and $r \in K(t)$ with $k=\operatorname{deg} r \geqslant 2$ such that $f=r \circ g$. Let us write $r=\frac{a}{b}$. Let $\lambda \in \hat{K}$ such that $\operatorname{deg} a-\lambda b=\operatorname{deg} r$ and factorize $a(t)-\lambda b(t)=$ $\alpha\left(t-t_{1}\right)\left(t-t_{2}\right) \cdots\left(t-t_{k}\right), \alpha \in K^{*}, t_{1}, \ldots, t_{k} \in K$. Then

$$
p-\lambda q=q \cdot(f-\lambda)=q \cdot\left(\frac{a-\lambda b}{b}\right)(g)=\alpha q \frac{\left(g-t_{1}\right) \cdots\left(g-t_{k}\right)}{b(g)} .
$$

Then by multiplication by v^{k} at the numerator and denominator we get:

$$
(p-\lambda q) \cdot\left(v^{k} b(g)\right)=\alpha q\left(u-t_{1} v\right) \cdots\left(u-t_{k} v\right)
$$

which is a polynomial identity. As $\operatorname{gcd}(a, b)=1, \operatorname{gcd}(u, v)=1$ and $\operatorname{gcd}(p, q)=1$ then $u-t_{1} v, \ldots, u-t_{k} v$ divide $p-\lambda q$. Hence $p-\lambda q$ is reducible in $K[\underline{x}]$.

Let us reformulate the Bertini-Krull theorem in our context from [Sc , Theorem 37]. It will enable us to end the proof of Theorem 2.2.
Theorem 2.5 (Bertini, Krull). Let $F(\underline{x}, \lambda)=p(\underline{x})-\lambda q(\underline{x}) \in K[\underline{x}, \lambda]$ an irreducible polynomial. Then the following conditions are equivalent:
(1) $F\left(\underline{x}, \lambda_{0}\right) \in K[\underline{x}]$ is reducible for all $\lambda_{0} \in K$ such that $\operatorname{deg}_{\underline{x}} F\left(\underline{x}, \lambda_{0}\right)=$ $\operatorname{deg}_{\underline{x}} F$.
(2) (a) either there exist $\phi, \psi \in K[\underline{x}]$ with $\operatorname{deg}_{\underline{x}} F>\max \{\operatorname{deg} \phi, \operatorname{deg} \psi\}$, and $a_{i} \in K[\lambda]$, such that

$$
F(\underline{x}, \lambda)=\sum_{i=0}^{n} a_{i}(\lambda) \phi(\underline{x})^{n-i} \psi(\underline{x})^{i} ;
$$

(b) or $\operatorname{char}(K)=\pi>0$ and $F(\underline{x}, \lambda) \in K\left[\underline{x}^{\pi}, \lambda\right]$, where $\underline{x}^{\pi}=$ $\left(x_{1}^{\pi}, \ldots, x_{n}^{\pi}\right)$.

We now end the proof of Theorem 2.2:
Proof. (3) \Rightarrow (1) Suppose that $p-\lambda_{0} q$ is reducible in $K[\underline{x}]$ for infinitely many $\lambda_{0} \in \hat{K}$; then it is reducible for all $\lambda_{0} \in K$ such that $\operatorname{deg}_{x} F\left(\underline{x}, \lambda_{0}\right)=\operatorname{deg}_{x} F$ (see Corollary 3 of Theorem 32 of $[\mathrm{Sc}]$). We apply Bertini-Krull theorem:

Case $(a): F(\underline{x}, \lambda)=p(\underline{x})-\lambda q(\underline{x})$ can be written:

$$
p(\underline{x})-\lambda q(\underline{x})=\sum_{i=0}^{n} a_{i}(\lambda) \phi(\underline{x})^{n-i} \psi(\underline{x})^{i} .
$$

So we may suppose that for $i=1, \ldots, n, \operatorname{deg}_{\lambda} a_{i}=1$, let us write $a_{i}(\lambda)=\alpha_{i}-\lambda \beta_{i}, \alpha_{i}, \beta_{i} \in K$. Then

$$
p(\underline{x})=\sum_{i=0}^{n} \alpha_{i} \phi(\underline{x})^{n-i} \psi(\underline{x})^{i}=\phi^{n} \sum_{i=0}^{n} \alpha_{i}\left(\frac{\psi}{\phi}\right)^{i}(\underline{x}),
$$

and

$$
q(\underline{x})=\sum_{i=0}^{n} \beta_{i} \phi(\underline{x})^{n-i} \psi(\underline{x})^{i}=\phi^{n} \sum_{i=0}^{n} \beta_{i}\left(\frac{\psi}{\phi}\right)^{i}(\underline{x}) .
$$

If we set $g(\underline{x})=\frac{\psi(\underline{x})}{\phi(\underline{x})} \in K[\underline{x}]$, and $r(t)=\frac{\sum_{i=0}^{n} \alpha_{i} t^{i}}{\sum_{i=0}^{n} \beta_{i} t^{i}}$ then $\frac{p}{q}(\underline{x})=r \circ g$. Moreover as $\operatorname{deg}_{\underline{x}} F>\max \{\operatorname{deg} \phi, \operatorname{deg} \psi\}$ this implies $n \geqslant 2$ so that $\operatorname{deg} r \geqslant 2$. Then $\frac{\bar{p}}{q}=f=r \circ g$ is a composite rational function

Case (b): Let $\pi=\operatorname{char}(K)>0$ and $F(\underline{x}, \lambda)=p(\underline{x})-\lambda q(\underline{x}) \in$ $K\left[\underline{x}^{\pi}, \lambda\right]$, For $\lambda=0$ it implies that $p(\underline{x})=P\left(\underline{x}^{\pi}\right)$, then there exists $p^{\prime} \in K[\underline{x}]$ such that $p(\underline{x})=\left(p^{\prime}(\underline{x})\right)^{\pi}$. For $\lambda=-1$ we obtain $s^{\prime} \in K[\underline{x}]$ such that $p(\underline{x})+q(\underline{x})=\left(s^{\prime}(\underline{x})\right)^{\pi}$. Then $q(\underline{x})=(p(\underline{x})+q(\underline{x}))-p(\underline{x})=$ $\left(s^{\prime}(\underline{x})\right)^{\pi}-\left(p^{\prime}(\underline{x})\right)^{\pi}=\left(s^{\prime}(\underline{x})-p^{\prime}(\underline{x})\right)^{\pi}$. Then if we set $q^{\prime}=s^{\prime}-p^{\prime}$ we obtain $q(\underline{x})=\left(q^{\prime}(\underline{x})\right)^{\pi}$. Now set $r(t)=t^{\pi}$ and $g=\frac{p^{\prime}}{q^{\prime}}$ we get $f=\frac{p}{q}=\left(\frac{p^{\prime}}{q^{\prime}}\right)^{\pi}=r \circ g$.

3. Kernel of the Jacobian derivation

We now consider the two variables case and K is an uncountable algebraically closed field of characteristic zero.
3.1. Jacobian derivation. Let $f, g \in K(x, y)$, the following formula:

$$
D_{f}(g)=\frac{\partial f}{\partial x} \frac{\partial g}{\partial y}-\frac{\partial f}{\partial y} \frac{\partial g}{\partial x},
$$

defines a derivation $D_{f}: K(x, y) \rightarrow K(x, y)$. Notice the $D_{f}(g)$ is the determinant of the Jacobian matrix of (f, g). We denote by C_{f} the kernel of D_{f} :

$$
C_{f}=\left\{g \in K(x, y) \mid D_{f}(g)=0\right\} .
$$

Then C_{f} is a subfield of $K(x, y)$. We have the inclusion $K(f) \subset C_{f}$. Moreover if $g^{k} \in C_{f}, k \in \mathbb{Z} \backslash\{0\}$ then $g \in C_{f}$.

Lemma 3.1. Let $f=\frac{p}{q}, g \in K(x, y)$. The following conditions are equivalent:
(1) $g \in C_{f}$;
(2) f and g are algebraically dependent;
(3) g is constant on irreducible components of the curves $(p-\lambda q=$ 0) for all but finitely many $\lambda \in \hat{K}$;
(4) g is constant on infinitely many irreducible components of the curves $(p-\lambda q=0), \lambda \in \hat{K}$.

Corollary 3.2. If $g \in C_{f}$ is not a constant then $C_{f}=C_{g}$.
Proof.

- (1) $\Leftrightarrow(2)$. We follow the idea of [Na1] instead of [St]. f and g are algebraically dependent if and only $\operatorname{transc}_{K} K(f, g)=1$. And $\operatorname{transc}_{K} K(f, g)=1$ if and only the rank of the Jacobian matrix of (f, g) is less or equal to 1 , which is equivalent to $g \in C_{f}$.
- $(2) \Rightarrow(3)$. Let f and g be algebraically dependent. Then there exists a two variables polynomial in f and g that vanishes. Let us write

$$
\sum_{i=0}^{n} R_{i}(f) g^{i}=0
$$

where $R_{i}(t) \in K[t]$. Let us write $f=\frac{p}{q}, g=\frac{u}{v}$ and $R_{n}(t)=$ $\alpha\left(t-\lambda_{1}\right) \cdots\left(t-\lambda_{m}\right)$. Then

$$
\sum_{i=0}^{n} R_{i}\left(\frac{p}{q}\right)\left(\frac{u}{v}\right)^{i}=0, \text { hence } \sum_{i=0}^{n} R_{i}\left(\frac{p}{q}\right) u^{i} v^{n-i}=0
$$

By multiplication by q^{d} for $d=\max \left\{\operatorname{deg} R_{i}\right\}$ (in order that $q^{d} R_{i}\left(\frac{p}{q}\right)$ are polynomials) we obtain

$$
q^{d} R_{n}\left(\frac{p}{q}\right) u^{n}=v\left(-q^{d} R_{n-1}\left(\frac{p}{q}\right) u^{n-1}-\cdots\right) .
$$

As $\operatorname{gcd}(u, v)=1$ then v divides the polynomial $q^{d} R_{n}\left(\frac{p}{q}\right)$, then v divides $q^{d-m}\left(p-\lambda_{1} q\right) \cdots\left(p-\lambda_{m} q\right)$. Then all irreducible factors of v divide q or $p-\lambda_{i} q, i=1, \ldots, m$.

Let $\lambda \notin\left\{\infty, \lambda_{1}, \ldots, \lambda_{m}\right\}$. Let V_{λ} be an irreducible component of $p-\lambda q$, then $V_{\lambda} \cap Z(v)$ is zero dimensional (or empty). Hence
v is not identically equal to 0 on V_{λ}. Then for all but finitely many $(x, y) \in V_{\lambda}$ we get:

$$
\sum_{i=0}^{n} R_{i}(\lambda) g(x, y)^{i}=0
$$

Therefore g can only reach a finite number of values c_{1}, \ldots, c_{n} (the roots of $\left.\sum_{i=0}^{n} R_{i}(\lambda) t^{i}\right)$. Since V_{λ} is irreducible, g is constant on V_{λ}.

- $(3) \Rightarrow(4)$. Clear.
- $(4) \Rightarrow(1)$. We first give a proof that if g is constant along an irreducible component V_{λ} of $(p-\lambda q=0)$ then $D_{f}(g)=0$ on V_{λ} (we suppose that V_{λ} is not in the poles of g). Let $\left(x_{0}, y_{0}\right) \in V_{\lambda}$ and $t \mapsto p(t)$ be a local parametrization of V_{λ} around $\left(x_{0}, y_{0}\right)$. By definition of $p(t)$ we have $f(p(t))=\lambda$, this implies that:

$$
\left\langle\left.\frac{d p}{d t} \right\rvert\, \overline{\operatorname{grad} f}\right\rangle=\frac{d(f(p(t))}{d t}=0
$$

and by hypotheses g is constant on V_{λ} this implies $g(p(t))$ is constant and again:

$$
\left\langle\left.\frac{d p}{d t} \right\rvert\, \overline{\operatorname{grad} g}\right\rangle=\frac{d(g(p(t))}{d t}=0 .
$$

Then grad f and grad g are orthogonal around $\left(x_{0}, y_{0}\right)$ on V_{λ} to the same vector, as we are in dimension 2 this implies that the determinant of Jacobian matrix of (f, g) is zero around $\left(x_{0}, y_{0}\right)$ on V_{λ}. By extension $D_{f}(g)=0$ on V_{λ}.

We now end the proof: If g is constant on infinitely many irreducible components V_{λ} of $(p-\lambda q=0)$ this implies that $D_{f}(g)=0$ on infinitely many V_{λ}. Then $D_{f}(g)=0$ in $K(x, y)$.
3.2. Group of the divisors. Let $f=\frac{p}{q}$, let $\lambda_{1}, \ldots, \lambda_{n} \in \hat{K}$, we denote by $G\left(f ; \lambda_{1}, \ldots, \lambda_{n}\right)$ the multiplicative group generated by all the divisors of the polynomials $p-\lambda_{i} q, i=1, \ldots, n$.

Let

$$
d(f)=(\operatorname{deg} f)^{2}+\operatorname{deg} f
$$

Lemma 3.3. Let $F_{1}, \ldots, F_{r} \in G\left(f ; \lambda_{1}, \ldots, \lambda_{n}\right)$. If $r \geqslant d(f)$ then there exists a collection of integers m_{1}, \ldots, m_{r} (not all equal to zero) such that

$$
g=\prod_{i=1}^{r} F_{i}^{m_{i}} \in C_{f}
$$

Proof. Let $\mu \notin\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$, and let S be an irreducible component of $(p-\mu q=0)$. Let \bar{S} be the projective closure of S. The functions F_{i} restricted to \bar{S} have their poles and zeroes on the points at infinity of S or on the intersection $S \cap Z\left(F_{i}\right) \subset Z(p) \cap Z(q)$.

Let $n: \tilde{S} \rightarrow \bar{S}$ be a normalization of \bar{S}. The inverse image under normalisation of the points at infinity are denoted by $\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}$, their number verifies $k \leqslant \operatorname{deg} S \leqslant \operatorname{deg} f$.

At a point $\delta \in Z(p) \cap Z(q)$, the number of points of $n^{-1}(\delta)$ is the local number of branches of S at δ then it is less or equal than $\operatorname{ord}_{\delta}(S)$, where $\operatorname{ord}_{\delta}(S)$ denotes the order (or multiplicity) of S at δ (see e.g. [Sh], paragraph II.5.3). Then

$$
\begin{aligned}
\# n^{-1}(\delta) & \leqslant \operatorname{ord}_{\delta}(S) \leqslant \operatorname{ord}_{\delta} Z(p-\mu q) \leqslant \operatorname{ord}_{\delta} Z(p-\mu q) \cdot \operatorname{ord}_{\delta} Z(p) \\
& \leqslant \operatorname{mult}_{\delta}(p-\mu q, p)=\operatorname{mult}_{\delta}(p, q)
\end{aligned}
$$

where $\operatorname{mult}_{\delta}(p, q)$ is the intersection multiplicity (see e.g. [Fu]). Then by Bézout theorem:
$\sum_{\delta \in Z(p) \cap Z(q)} \# n^{-1}(\delta) \leqslant \sum_{\delta \in Z(p) \cap Z(q)} \operatorname{mult}_{\delta}(p, q) \leqslant \operatorname{deg} p \cdot \operatorname{deg} q \leqslant(\operatorname{deg} f)^{2}$.
Then the inverse image under normalisation of $\cup_{i=1}^{r} S \cap Z\left(F_{i}\right)$ denoted by $\left\{\gamma_{k+1}, \ldots, \gamma_{\ell}\right\}$ have less or equal than $(\operatorname{deg} f)^{2}$ elements. Notice that $\ell \leqslant \operatorname{deg} f+(\operatorname{deg} f)^{2}=d(f)$.

Now let $\nu_{i j}$ be the order of F_{i} at $\gamma_{j}(i=1, \ldots, r ; j=1, \ldots, \ell)$. Consider the matrix $M=\left(\nu_{i j}\right)$. Because the degree of the divisor $\left(F_{i}\right)$ (seen over \tilde{S}) is zero we get $\sum_{j=1}^{\ell} \nu_{i j}=0$, for $i=1, \ldots, r$, that means that columns of M are linearly dependent. Then rk $M<\ell \leqslant$ $d(f)$, by hypothesis $r \geqslant d(f)$, then the rows of M are also linearly dependent. Let $m_{1}(\mu, S), \ldots, m_{r}(\mu, S)$ such that $\sum_{i=1}^{r} m_{i}(\mu, S) \nu_{i j}=0$, $j=1, \ldots, \ell$.

Consider the function $g_{\mu, S}=\prod_{i=1}^{r} F_{i}^{m_{i}(\lambda, S)}$. Then this function is regular and does not have zeroes or poles at the points γ_{j}, because $\sum_{i=1}^{r} m_{i}(\mu, S) \nu_{i j}=0$. Then $g_{\mu, S}$ is constant on S.

This construction gives a map $(\mu, S) \mapsto\left(m_{1}(\mu, S), \ldots, m_{r}(\mu, S)\right)$ from K to \mathbb{Z}^{r}. Since K is uncountable, there exists infinitely many (μ, S) with the same $\left(m_{1}, \ldots, m_{r}\right)$. Then the function $g=\prod_{i=1}^{r} F_{i}^{m_{i}}$ is constant on infinitely many components of curves of $(p-\mu q=0)$ and by Lemma 3.1 this implies $g \in C_{f}$.
3.3. Non-composite rational function. Let $f=\frac{p}{q}$. Let $G(f)$ be the multiplicative group generated by all divisors of the polynomials
$p-\lambda q$ for all $\lambda \in \hat{K}$. In fact we have

$$
G(f)=\bigcup_{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in K^{n}} G\left(f ; \lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Definition 3.4. A family $F_{1}, \ldots, F_{r} \in G(f)$ is f-free if $\left(m_{1}, \ldots, m_{r}\right) \in$ \mathbb{Z}^{r} is such that $\prod_{i=1}^{r} F_{i}^{m_{i}} \in C_{f}$ then $\left(m_{1}, \ldots, m_{r}\right)=(0, \ldots, 0)$.

A f-free family $F_{1}, \ldots, F_{r} \in G(f)$ is f-maximal if for all $F \in G(f)$, $\left\{F_{1}, \ldots, F_{r}, F\right\}$ is not f-free.

Theorem 3.5. Let $f \in K(x, y), \operatorname{deg} f>0$. Then the following conditions are equivalent:
(1) $\operatorname{deg} f=\min \left\{\operatorname{deg} g \mid g \in C_{f} \backslash K\right\}$;
(2) $\sigma(f)$ is finite;
(3) $C_{f}=K(f)$;
(4) f is non-composite.

Remark 3.6. This does not give a new proof of " $\sigma(f)$ is finite $\Leftrightarrow f$ is non-composite" because we use Bertini-Krull theorem.

Remark 3.7. The proof $(1) \Rightarrow(2)$ is somewhat easier than in $[\mathrm{St}]$, whereas $(2) \Rightarrow(3)$ is more difficult.

Proof.

- $(1) \Rightarrow(2)$. Let us suppose that $\sigma(f)$ is infinite. Set $f=\frac{p}{q}$, with $\operatorname{gcd}(p, q)=1$. For all $\alpha \in \sigma(f)$, let F_{α} be an irreducible divisor of $p-\alpha q$, such that $\operatorname{deg} F_{\alpha}<\operatorname{deg} f$. By Lemma 3.3 there exists a f-maximal family $\left\{F_{1}, \ldots, F_{r}\right\}$ with $r \leqslant d(f)$. Moreover $r \geqslant 1$ because $\left\{F_{\alpha}\right\}$ is f-free: if not there exists $k \neq 0$ such that $F_{\alpha}^{k} \in C_{f}$ then $F_{\alpha} \in C_{f}$, but $\operatorname{deg} F_{\alpha}<\operatorname{deg} f$ that contradicts the hypothesis of minimality.

Now the collection $\left\{F_{1}, \ldots, F_{r}, F_{\alpha}\right\}$ is not f-free, so that there exist integers $\left\{m_{1}(\alpha), \ldots, m_{r}(\alpha), m(\alpha)\right\}$, with $m(\alpha) \neq 0$, such that

$$
F_{1}^{m_{1}(\alpha)} \cdots F_{r}^{m_{r}(\alpha)} \cdot F_{\alpha}^{m(\alpha)} \in C_{f} .
$$

Since $\sigma(f)$ is infinite then is equal to \hat{K} minus a finite number of values (see Theorem 2.2) then $\sigma(f)$ is uncountable and the map $\alpha \mapsto\left(m_{1}(\alpha), \ldots, m_{r}(\alpha), m(\alpha)\right)$ is not injective. Let $\alpha \neq \beta$ such that $m_{i}(\alpha)=m_{i}(\beta)=m_{i}, i=1, \ldots, r$ and $m(\alpha)=m(\beta)=m$. Then $F_{1}^{m_{1}} \cdots F_{r}^{m_{r}} \cdot F_{\alpha}^{m} \in C_{f}$ and $F_{1}^{m_{1}} \cdots F_{r}^{m_{r}} \cdot F_{\beta}^{m} \in C_{f}$, it implies that $\left(F_{\alpha} / F_{\beta}\right)^{m} \in C_{f}$, therefore $F_{\alpha} / F_{\beta} \in C_{f}$.

Now $\operatorname{deg} \frac{F_{\alpha}}{F_{\beta}}<\operatorname{deg} f$, then by the hypothesis of minimality it proves $\frac{F_{\alpha}}{F_{\beta}}$ is a constant. Let $a \in K^{*}$ such that $F_{\alpha}=a F_{\beta}$, by
definition F_{α} divides $p-\alpha q$, but moreover F_{α} divides $p-\beta q$ (as F_{β} do). Then as F_{α} divides both $p-\alpha q$ and $p-\beta q, F_{\alpha}$ divides p and q, that contradicts $\operatorname{gcd}(p, q)=1$.

- (2) $\Rightarrow(3)$. Let $f=\frac{p}{q}, \sigma(f)$ finite and $g \in C_{f}$, we aim at proving that $g \in K(f)$. The proof will be done in several steps:
(a) Reduction to the case $g=\frac{u}{q^{2}}$. Let $g=\frac{u}{v} \in C_{f}$, then f and g are algebraically dependent, then there exists a polynomial in f and g that vanishes. As before let us write

$$
\sum_{i=0}^{n} R_{i}(f) g^{i}=0
$$

where $R_{i}(t) \in K[t]$. As $f=\frac{p}{q}, g=\frac{u}{v}$ then

$$
\sum_{i=0}^{n} R_{i}\left(\frac{p}{q}\right)\left(\frac{u}{v}\right)^{i}=0, \text { hence } \sum_{i=0}^{n} R_{i}\left(\frac{p}{q}\right) u^{i} v^{n-i}=0
$$

By multiplication by q^{d} for $d=\max \left\{\operatorname{deg} R_{i}\right\}$ (in order that all $q^{d} R_{i}\left(\frac{p}{q}\right)$ are polynomials) we get:

$$
q^{d} R_{n}\left(\frac{p}{q}\right) u^{n}=v\left(-q^{d} R_{n-1}\left(\frac{p}{q}\right) u^{n-1}-\cdots\right) .
$$

As $\operatorname{gcd}(u, v)=1$ then v divides the polynomial $q^{d} R_{n}\left(\frac{p}{q}\right)$; we write $v u^{\prime}=q^{d} R_{n}\left(\frac{p}{q}\right)$ then

$$
g=\frac{u}{v}=\frac{u u^{\prime}}{q^{d} R_{n}\left(\frac{p}{q}\right)} .
$$

But $R_{n}\left(\frac{p}{q}\right) \in K\left(\frac{p}{q}\right)$ then $\frac{u u^{\prime}}{q^{d}} \in C_{f}$, but also we have that $g \in K(f)$ if and only if $\frac{u u^{\prime}}{q^{d}} \in K(f)$. This proves the reduction.
(b) Reduction to the case $g=q u$. Let $g=\frac{u}{q^{\ell}} \in C_{f}, \ell \geqslant 0$. As $\sigma(f)$ is finite by Lemma 3.1 we choose $\lambda \in K$ such that $p-\lambda q$ is irreducible and $g \in C_{f}$ is constant (equal to c) on $p-\lambda q$. As $g=\frac{u}{q^{\ell}}$, we have $p-\lambda q$ divides $u-c q^{\ell}$. We can write:

$$
u-c q^{\ell}=u^{\prime}(p-\lambda q)
$$

Then

$$
\frac{u}{q^{\ell}}=\frac{u^{\prime}}{q^{\ell-1}}\left(\frac{p}{q}-\lambda\right)+c .
$$

As $\frac{u}{q^{\ell}}$ and $f=\frac{p}{q}$ are in C_{f} we get $\frac{u^{\prime}}{q^{\ell-1}} \in C_{f}$; moreover $\frac{u}{q^{\ell}} \in K(f)$ if and only if $\frac{u^{\prime}}{q^{\ell-1}} \in K(f)$. By induction on $\ell \geqslant 0$ this prove the reduction.
(c) Reduction to the case $g=q$. Let $g=q u \in C_{f} . g$ is constant along the irreducible curve ($p-\lambda q=0$). Then $q u=u_{1}(p-\lambda q)+c_{1}$.
Let $\operatorname{deg} p=\operatorname{deg} q$. Then $q^{h} u^{h}=u_{1}^{h}\left(p^{h}-\lambda q^{h}\right)\left(\right.$ where P^{h} denotes the homogeneous part of higher degree of the polynomial P). Then $p^{h}-\lambda q^{h}$ divides $q^{h} u^{h}$ for infinitely many $\lambda \in K$. As $\operatorname{gcd}(p, q)=1$ this gives a contradiction.
Hence $\operatorname{deg} p \neq \operatorname{deg} q$. We may assume $\operatorname{deg} p>\operatorname{deg} q$ (otherwise $q u \in C_{f}$ and $\frac{p}{q} \in C_{f}$ implies $p u \in C_{f}$). Then we write:

$$
q u=q u_{1}\left(\frac{p}{q}-\lambda\right)+c_{1},
$$

that proves that $q u_{1} \in C_{f}$ and that $q u \in K(f)$ if and only if $q u_{1} \in K(f)$. The inequality $\operatorname{deg} p>\operatorname{deg} q$ implies that $\operatorname{deg} u_{1}<\operatorname{deg} u$. We continue by induction, $q u_{1}=q u_{2}\left(\frac{p}{q}-\right.$ $\lambda)+c_{2}$, with $\operatorname{deg} u_{2}<\operatorname{deg} u_{1}, \ldots$, until we get $\operatorname{deg} u_{n}=0$ that is $u_{n} \in K^{*}$. Thus we have prove firstly that $q u_{n} \in C_{f}$, that is to say $q \in C_{f}$, and secondly that $q u \in K(f)$ if and only if $q \in K(f)$.
(d) Case $g=q$. If $q \in C_{f}$ then q is constant along the irreducible curve $(p-\lambda q=0)$ then $q=a(p-\lambda q)+c, a \in K^{*}$. Then

$$
q=\frac{c}{1-a\left(\frac{p}{q}-\lambda\right)} \in K\left(\frac{p}{q}\right)=K(f) .
$$

- $(3) \Rightarrow(4)$. Let us assume that $C_{f}=K(f)$ and that f is composite, then there exist $r \in K(t), \operatorname{deg} r \geqslant 2$ and $g \in K(x, y)$ such that $f=r \circ g$. By the formula $\operatorname{deg} f=\operatorname{deg} r \cdot \operatorname{deg} g$ we get $\operatorname{deg} f>\operatorname{deg} g$. Now if $r=\frac{a}{b}$ then we have a relation $b(g) f=a(g)$, then f and g are algebraically dependent, hence by Lemma 3.1, $g \in C_{f}$. As $C_{f}=K(f)$, there exists $s \in K(t)$ such that $g=s \circ f$. Then $\operatorname{deg} g \geqslant \operatorname{deg} f$. That yields to a contradiction.
- $(4) \Rightarrow(1)$. Assume that f is non-composite and let $g \in C_{f}$ of minimal degree. By Corollary 3.2 we get $C_{f}=C_{g}$, then $\operatorname{deg} g=\min \left\{\operatorname{deg} h \mid h \in C_{g} \backslash K\right\}$. Then by the already proved implication (1) $\Rightarrow(3)$ for g, we get $C_{g}=K(g)$. Then $f \in C_{f}=$ $C_{g}=K(g)$, then there exists $r \in K(t)$ such that $f=r \circ g$, but
as f is non-composite then $\operatorname{deg} r=1$, hence $\operatorname{deg} f=\operatorname{deg} g=$ $\min \left\{\operatorname{deg} h \mid h \in C_{f} \backslash K\right\}$.

4. Order of reducibility of rational functions in two VARIABLES

Let $f=\frac{p}{q} \in K(x, y)$; for all $\lambda \in \hat{K}$, let n_{λ} be the number of irreducible components of $p-\lambda q$. Let

$$
\rho(f)=\sum_{\lambda \in \hat{K}}\left(n_{\lambda}-1\right) .
$$

By Theorem 2.2, $\rho(f)$ is finite if and only if f is non-composite. We give a bound for $\rho(f)$. Recall that we defined:

$$
d(f)=(\operatorname{deg} f)^{2}+\operatorname{deg} f
$$

Theorem 4.1. Let K be an algebraic closed field of characteristic 0 . If $f \in K(x, y)$ is non-composite then

$$
\rho(f)<d(f)
$$

Proof. First notice that K can be supposed uncountable, otherwise it can be embedded into an uncountable field L and the spectrum in K would be included in the spectrum in L.

Let us assume that f is non-composite, then by Theorem 2.2 and its corollary we have that $\sigma(f)$ is finite: $\sigma(f)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$. We suppose that $\rho(f) \geqslant d(f)$. Let $f=\frac{p}{q}$. We decompose the polynomials $p-\lambda_{i} q$ in irreducible factors, for $i=1, \ldots, r$:

$$
p-\lambda_{i} q=\prod_{j=1}^{n_{i}} F_{i, j}^{k_{i, j}}
$$

where n_{i} stands for $n_{\lambda_{i}}$. Notice that since $\operatorname{gcd}(p, q)=1$ then $F_{i, j}$ divides $p-\lambda_{i} q$ but do not divides any of $p-\mu q, \mu \neq \lambda_{i}$. The collection $\left\{F_{1,1}, \ldots, F_{1, n_{1}-1}, \ldots, F_{r, 1}, \ldots, F_{r, n_{r}-1}\right\}$, is included in $G\left(f, \lambda_{1}, \ldots, \lambda_{r}\right)$ and contains $\rho(f) \geqslant d(f)$ elements, then Lemma 3.3 provides a collections $\left\{m_{1,1}, \ldots, m_{1, n_{1}-1}, \ldots, m_{r, 1}, \ldots, m_{r, n_{r}-1}\right\}$ of integers (not all equal to 0) such that

$$
\begin{equation*}
g=\prod_{i=1}^{r} \prod_{j=1}^{n_{i}-1} F_{i, j}^{m_{i, j}} \in C_{f} . \tag{1}
\end{equation*}
$$

By Theorem 3.5 it implies that $g \in K(f)$, then $g=\frac{u(f)}{v(f)}$, where $u, v \in K[t]$. Let μ_{1}, \ldots, μ_{k} be the roots of u and $\mu_{k+1}, \ldots, \mu_{\ell}$ the roots
of v. Then

$$
g=\frac{u\left(\frac{p}{q}\right)}{v\left(\frac{p}{q}\right)}=\alpha \frac{\prod_{i=1}^{k} \frac{p}{q}-\mu_{i}}{\prod_{i=k+1}^{\ell} \frac{p}{q}-\mu_{i}}
$$

so that

$$
\begin{equation*}
g=\alpha q^{\ell-2 k} \frac{\prod_{i=1}^{k} p-\mu_{i} q}{\prod_{i=k+1}^{\ell} p-\mu_{i} q} . \tag{2}
\end{equation*}
$$

If $m_{i_{0}, j_{0}} \neq 0$ then by the definition of g by equation (1) and by equation (2), we get that $F_{i_{0}, j_{0}}$ divides one of the $p-\mu_{i} q$ or divides q. If $F_{i_{0}, j_{0}}$ divides $p-\mu_{i} q$ then $\mu_{i}=\lambda_{i_{0}} \in \sigma(f)$. If $F_{i_{0}, j_{0}}$ divides q then $\mu_{i}=\infty$, so that $\infty \in \sigma(f)$. In both cases $p-\lambda_{i_{0}} q$ appears in formula (2) at the numerator or at the denominator of g. Then $F_{i_{0}, n_{i_{0}}}$ should appears in decomposition (1), that gives a contradiction. Then $\rho(f)<d(f)$.

5. Extension to several variables

We follows the lines of the proof of [Na3]. We will need a result that claims that the irreducibility and the degree of a family of polynomials remain constant after a generic linear change of coordinates. For $\underline{x}=$ $\left(x_{1}, \ldots, x_{n}\right)$ and a matrix $B=\left(b_{i j}\right) \in G l_{n}(K)$, we denote the new coordinates by $B \cdot \underline{x}$:

$$
B \cdot \underline{x}=\left(\sum_{j=1}^{n} b_{1 j} x_{j}, \ldots, \sum_{j=1}^{n} b_{n j} x_{j}\right) .
$$

Proposition 5.1. Let K be an infinite field. Let $n \geqslant 3$ and $p_{1}, \ldots, p_{\ell} \in$ $K\left[x_{1}, \ldots, x_{n}\right]$ be irreducible polynomials. Then there exists a matrix $B \in G l_{n}(K)$ such that for all $i=1, \ldots, \ell$ we get:

- $p_{i}(B \cdot \underline{x})$ is irreducible in $\overline{K\left(x_{1}\right)}\left[x_{2}, \ldots, x_{n}\right]$;
- $\operatorname{deg}_{\left(x_{2}, \ldots, x_{n}\right)} p_{i}(B \cdot \underline{x})=\operatorname{deg}_{\left(x_{1}, \ldots, x_{n}\right)} p_{i}$.

The proof of this proposition can be derived from [Sm, Ch. 5, Th. 3D] or by using [FJ, Prop. 9.31]. See [Na3] for details.

Now we return to our main result.
Theorem 5.2. Let K be an algebraically closed field of characteristic 0 . Let $f \in K(\underline{x})$ be non-composite then $\rho(f)<(\operatorname{deg} f)^{2}+\operatorname{deg} f$.

Proof. We will prove this theorem by induction on the number n of variables. For $n=2$, we proved in Theorem 4.1 that $\rho(f)<(\operatorname{deg} f)^{2}+$ $\operatorname{deg} f$.

Let $f=\frac{p}{q} \in K(\underline{x})$, with $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$. We suppose that f is noncomposite. For each $\lambda \in \sigma(f)$ we decompose $p-\lambda q$ into irreducible factors:

$$
\begin{equation*}
p-\lambda q=\prod_{i=1}^{n_{\lambda}} F_{\lambda, i}^{r_{\lambda, i}} . \tag{3}
\end{equation*}
$$

We fix $\mu \notin \sigma(f)$. We apply Proposition 5.1 to the polynomials $p-\mu q$ and $F_{\lambda, i}$, for all $\lambda \in \sigma(f)$ and all $i=1, \ldots, n_{\lambda}$. Then the polynomials $p(B \cdot \underline{x})-\mu q(B \cdot \underline{x})$ and $F_{\lambda, i}(B \cdot \underline{x})$ are irreducible in $\overline{K\left(x_{1}\right)}\left[x_{2}, \ldots, x_{n}\right]$ and their degrees in $\left(x_{2}, \ldots, x_{n}\right)$ are equals to the degrees in $\left(x_{1}, \ldots, x_{n}\right)$ of $p-\mu q$ and $F_{\lambda, i}$.

Let denote by $k=\overline{K\left(x_{1}\right)}$. This is an uncountable field, algebraically closed of characteristic zero. Now $p(B \cdot \underline{x})-\mu q(B \cdot \underline{x})$ is irreducible, then $f(B \cdot \underline{x})$ is non-composite in $k\left(x_{2}, \ldots, x_{n}\right)$.

Now equation (3) become:

$$
p(B \cdot \underline{x})-\lambda q(B \cdot \underline{x})=\prod_{i=1}^{n_{\lambda}} F_{\lambda, i}(B \cdot \underline{x})^{r_{\lambda, i}} .
$$

Which is the decomposition of $p(B \cdot \underline{x})-\lambda q(B \cdot \underline{x})$ into irreducible factors in $k\left(x_{2}, \ldots, x_{n}\right)$. Then

$$
\sigma(f) \subset \sigma(f(B \cdot \underline{x}))
$$

where $\sigma(f)$ is a subset of K, and $\sigma(f(B \cdot \underline{x}))$ is a subset of $k=\overline{K\left(x_{1}\right)}$. As n_{λ} is also the number of distinct irreducible factors of $p(B \cdot \underline{x})-\lambda q(B \cdot \underline{x})$ we get:

$$
\rho(f) \leqslant \rho(f(B \cdot \underline{x})) .
$$

Now suppose that the result is true for $n-1$ variables. Then for $f(B \cdot \underline{x}) \in k\left(x_{2}, \ldots, x_{n}\right)$ we get:

$$
\rho(f(B \cdot \underline{x}))<\left(\operatorname{deg}_{\left(x_{2}, \ldots, x_{n}\right)} f(B \cdot \underline{x})\right)^{2}+\left(\operatorname{deg}_{\left(x_{2}, \ldots, x_{n}\right)} f(B \cdot \underline{x})\right) .
$$

Hence:

$$
\begin{aligned}
\rho(f) & \leqslant \rho(f(B \cdot \underline{x})) \\
& <\left(\operatorname{deg}_{\left(x_{2}, \ldots, x_{n}\right)} f(B \cdot \underline{x})\right)^{2}+\left(\operatorname{deg}_{\left(x_{2}, \ldots, x_{n}\right)} f(B \cdot \underline{x})\right) \\
& =\left(\operatorname{deg}_{\left(x_{1}, \ldots, x_{n}\right)} f\right)^{2}+\left(\operatorname{deg}_{\left(x_{1}, \ldots, x_{n}\right)} f\right) \\
& =(\operatorname{deg} f)^{2}+(\operatorname{deg} f)
\end{aligned}
$$

If for $n=2$ we start the induction with Lorenzini's bound $\rho(f)<$ $(\operatorname{deg} f)^{2}$ we obtain with the same proof the following result for several variables, for K of any characteristic K and a better bound:

Theorem 5.3. Let K be an algebraically closed field. Let $f \in K(\underline{x})$ be non-composite then $\rho(f)<(\operatorname{deg} f)^{2}$.

References

[FJ] M. Fried, M. Jarden, Field arithmetic. Springer-Verlag, 1986.
[Fu] W. Fulton, Algebraic curves. Addison-Wesley, reprint of 1969.
[Lo] D. Lorenzini, Reducibility of polynomials in two variables. J. Algebra 156 (1993), 65-75.
[Na1] S. Najib, Factorisation des polynômes $P\left(X_{1}, \ldots, X_{n}\right)-\lambda$ et théorème de Stein. Thesis, University of Lille, 2005.
[Na2] S. Najib, Sur le spectre d'un polynôme à plusieurs variables. Acta Arith. 114 (2004), 169-181.
[Na3] S. Najib, Une généralisation de l'inégalité de Stein-Lorenzini. J. Algebra 292 (2005), 566-573.
[Ru] W. Ruppert, Reduzibilität ebener Kurven. J. Reine Angew. Math. 369 (1986), 167-191.
[Sc] A. Schinzel, Polynomials with special regard to reducibility. Encyclopedia of Mathematics and its Applications 77. Cambridge University, 2000.
[Sm] W. Schmidt, Equations over finite fields. An elementary approach. Lecture Notes in Mathematics 536. Springer-Verlag, 1976.
[Sh] I. Shafarevich, Basic algebraic geometry 1. Springer-Verlag, Berlin, 1994.
[St] Y. Stein, The total reducibility order of a polynomial in two variables. Israel J. Math. 68 (1989), 109-122.
[Vi] A. Vistoli, The number of reducible hypersurfaces in a pencil. Invent. Math. 112 (1993), 247-262.

Laboratoire Paul Painlevé, Mathématiques, Université de Lille 1, 59655 Villeneuve D'Asce, France.

E-mail address: Arnaud.Bodin@math.univ-lille1.fr

