SOLUTIONS OF A POLYNOMIAL EQUATION MODULO A PRIME POWER

ARNAUD BODIN AND CHRISTIAN DROUIN

ABSTRACT. How do you find the integer solutions of a polynomial equation modulo an integer?

1. INTRODUCTION

1.1. Roots of polynomials over Z/nZ

If p is a prime number, the ring Z/pZ is actually a field. Thus, a polynomial P(X) € Z[X] of
degree d has at most d roots in Z/pZ. Problems arise when calculations are done modulo an
arbitrary integer n. For example, what are the solutions to the equation

22+ 11 =0 (mod 15)?

There are 4 solutions {2,7,8,13} even though the equation is indeed a polynomial equation of
degree 2.

Even very simple equations can have surprisingly many solutions. For instance, take P(X) = X?2.
When working modulo p?¢ with p > 2, the equation

22 =0 (mod p*)
has not two but p® distinct solutions:
x; =1ip® fori=0,1,...,p°—1.
Thus, even a degree 2 polynomial can have exponentially many solutions as the modulus grows.

Finally, Shamir [10] gave the remarkable example of the polynomial P(X) = X, which factors
in a surprising way modulo a composite number n = pq with two distinct primes:

X =0+ Y pX +q)(¢X +p) (mod pq),

where p? + ¢? is invertible modulo n, and pX + ¢ and ¢X + p are irreducible over Z/nZ. Even
such a simple polynomial can behave in subtle ways when the modulus is not prime.

1.2. Reduction to a prime power modulus

How should one understand these phenomena? If p is prime, the ring Z/pZ is a field, so a
polynomial of degree d has at most d roots modulo p.

Ifn= Hizl p;' is the prime factorization, then solving P(z) = 0 (mod n) is equivalent to solving
P(z) =0 (mod p;*) for each ¢ = 1,...,l. This reduction follows from the Chinese Remainder
Theorem, which also provides an efficient way to recombine the solutions modulo each prime
power into solutions modulo n, using only modular inverses.

But is the problem of determining the roots of a polynomial simpler if the modulus is just a
power of a prime number? In fact, no! For example, the polynomial X? of degree 2 already has 3
€

roots {0,3,6} modulo 32. Thus, the real source of complications is already present when n = p
is a prime power.
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Let p be a prime number, e = 0 an integer, and P(X) € Z[X]. The purpose
of this article is to calculate the integer solutions x of the equation P(x) = 0
(mod p), and to understand how these solutions evolve as e grows.

1.3. Outline

In this note, we explain how the solutions of the equations P(z) = 0 (mod p®) evolve as e grows,
and how they can all be represented in the form of a tree. Each vertex corresponds to a solution
modulo p¢, and its children are the solutions of the same equation modulo p¢*! that reduce to it
modulo p¢. The figure below represents the set of solutions to the equations P(x) =0 (mod p®)
for P(X) = (X% +3)(X? +3X +9), with p = 3, for different values of e. (This example will be
revisited later, see Examples and [3.2])

Since this tree can have many vertices, our goal is to concentrate all this information into a much
smaller subtree, the trunk. (In our example, this corresponds to the subtree with two edges in
red, drawn with thick lines in the figure.) To each vertex of the trunk, we attach an integer
called the thickness.

The trunk allows the complete reconstruction of the solution tree (Theorem : starting from
each vertex of the trunk, we build a fan of solutions emerging from this vertex. In the figure
below there are two fans: the first one consists of all possible children of the vertex 0 at level
1, up to level t; = 3 (t; being the thickness at this vertex of level 1). The second fan starts
at the vertex 3 at level 2, up to level ¢; + to = 4 (t3 being the thickness at this vertex of
level 2). Alternatively, one could simply count the number of solutions at each level p® without
enumerating them (Corollary .

30 12 66 48
3 57 39 21 75

solutions mod p*

solutions mod p?

solutions mod p?

solutions mod p

FIGURE 1. The trunk and the tree of solutions of P(X) = (X2+3)(X2+3X +9),
p=3.

2. TREES AND TRUNKS

2.1. p-adic congruence tree

We fix p > 2 a prime number. The p-adic congruence tree, denoted €, is an infinite tree
whose root is the pair (0,0) of level e = 0 and whose vertices of level e are the pairs (z, €), where
the integer z is between 0 and p® — 1. The edges of this tree are those connecting two vertices
(x,e) and (2/,e+ 1) such that 2’ = 2 (mod p°). Thus, we can define a partial order relation on
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the vertices of this graph by: (z,e) < (2/,¢€’) if and only if e < ¢’ and 2’ = 2 (mod p°). In other
words, (z,€) is located on the path connecting the root to (2/,¢’).

root
11=2+0p+ 1p?

FIGURE 2. Here p = 3. Left: the p-adic congruence tree €2, each vertex is labeled
by in integer z € [0, p® — 1]. Right: the decomposition of x = 11 in base p, each
edge is labeled by a integer a; € [0,p — 1].

For a given vertex, we can consider that each outgoing edge is indexed by an integer between 0
and p — 1. A vertex of the tree corresponds to an integer x € Z, the path from the root of the
tree to this vertex corresponds to its p-adic decomposition, i.e. a finite sum z = Ei;O a;p* with
0 <a; <p—1 (for each i > 0). The infinite paths in the tree correspond to coherent sequences
of residues and naturally form a ring, which is exactly the ring of p-adic integers Z,,.

2.2. Solution tree

Let P(X) € Z[X] be a polynomial with integer coefficients. We denote:
Tree(P) = {(z,e) € Qp | P(z) =0 (mod p°)}

This solution tree may be finite or infinite. Let us verify that Tree(P) is indeed a tree: let
(x,e) < (2/,€) with (2/,¢") € Tree(P), then = 2/ (mod p°) hence P(z) = P(z') =0 (mod p®)
and thus we also have (z,e) € Tree(P).

In particular, infinite paths in Tree(P) (that is, sequences (ze,e) with P(z.) = 0 mod p°® and
Tet1 = T mod p€) correspond to roots in Z, of the polynomial P, meaning p-adic integers «
such that P(a) =0 in Z,.

2.3. Thickness

Let P € Z[X] be a polynomial of degree d. To simplify the presentation throughout this article,
we assume that p does not divide P(X) in Z[X], in other words, the coefficients of P are not
simultaneously all divisible by p. This is not a significant loss of generality; if this assumption
were not verified, we would start by writing P(X) = p"°Q(X) where p does not divide Q(X) and
then all the results would apply to Q(X).

Definition 2.1. Let r € Z. The thickness t of P at r is the largest integer such that there exists
Q(X) € Z[X] such that:

P(r+pX) = p'Q(X)

The polynomial () is the successor of P for the root r.



4 ARNAUD BODIN AND CHRISTIAN DROUIN
Note that the definition of thickness is only meaningful for the roots of P modulo p:
P(r)=0 (modp) <= t>1

Also note that by the maximality of ¢, p does not divide Q(X) in Z[X].

2.4. Trunk of a polynomial

For a polynomial P € Z[X], we now define its trunk and the thicknesses associated with its
vertices. We will denote the trunk by Trunk(P). It is a subtree, maybe infinite, of the solution
tree Tree(P).

We set Py = P. We define the structure of the trunk inductively, with each level built from
the previous one. At each step, we look for roots modulo p of the current polynomial Py. For
each such root r, we consider the polynomial Py(r + pX) and factor out the highest power
p' of p (t is the thickness). We then define the successor polynomial associated with r as
P (X) = e Pi(r + pX).

More precisely:

— Level 0. We set (r,k) = (0,0) € Trunk(P). This is the only vertex of the trunk to which
no thickness is associated.

— Level 1. For each rg € [0,p— 1] such that P(ro) =0 (mod p), we compute the decompo-
sition P(rp+ pX) = p*Q(X) and include in the trunk the vertex (rg, 1) associated with
the thickness t;.

— Lewvel 2. For the successor () of P at each ry from the previous step, we look for solutions
r1 € [0,p—1] such that Q(r;) = 0 (mod p); we compute the decomposition Q(r;+pX) =
p2 R(X); the pair (ro+pri,2) is a new element of Trunk(P) associated with the thickness
ty.

— From level k to level k+1. By induction, suppose that (ro4pri+p>ro+- - -+pFlr_1, k) €
Trunk(P) with the polynomial P} obtained as a successor of r;_1. We look for solutions
ri € [0,p — 1] such that Py(rr) = 0 (mod p); we compute the decomposition Pj(ry +
pX) = ptt1 P 1 (X); the pair (ro 4+ pr1 + p?ra + -+ + pFry, k + 1) is an element of
Trunk(P) associated with the thickness tx1.

The tree-top function associates to each vertex (r, k) of Trunk(P) is the sum of the thicknesses
encountered on the path to the root. In other words,

o(r k) =t +ta+ -+t

where each ¢; is the thickness at level i of the vertex on the path between the root and the vertex

(r, k).
\tk (pk:t1+"'+tk

1
1
1

ta w2 =11 +12

1 p1=t

FIGURE 3. Thickness and the tree-top function ¢.
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2.5. An example

Before stating the theorem, let’s go through an example to better understand these concepts.
We explain the computation of the trunk illustrated in Figure 5

Ezample 2.2. Let P(X) = (X% + 3)(X? + 3X +9) and p = 3. The reduction modulo p of P is
P(X) = X*. Thus for ry = 0, we have P(rg) = 0 (mod 3). The decomposition of P(rg + pX)
is P(3X) = 33(3X2 4+ 1)(X? + X + 1). Thus the thickness associated with rq is ¢; = 3 and the
successor of P at rg is P1(X) = (3X? + 1)(X2 4+ X + 1). The first vertex of the trunk is thus
(ro,1) = (0, 1) associated with a thickness ¢; = 3.

We start again, from Py: Pj(X) = X2+ X +1 vanishes modulo 3 at r; = 1, and the decomposition
of Pi(r1 +pX)is Pi(1+3X)=3427X? +18X +4)(3X? +3X + 1). Thus the second vertex of
the trunk is (ro 4+ pri,2) = (3,2) associated with a thickness t3 = 1.

The successor of Py at 71 is Po(X) = (27X2% + 18X +4)(3X2 + 3X + 1), which does not vanish
modulo p = 3. Thus, the calculations stop here.

In summary, besides the root (0,0), the trunk is composed of vertices (0,1) (with ¢; = 3) and
(3,2) (with ¢t = 1).

3. MAIN THEOREM

3.1. From the trunk to the tree
We recall that:

P(z) =0 (mod p°) <= (z,e) € Tree(P)

The following theorem indicates how Trunk(P) determines the roots Tree(P) of a polynomial
P, via the tree-top function ¢ associated with the trunk. What’s the benefit? The trunk is
easily computed from P and its number of vertices for a fixed level e is bounded by the degree
of P (see Section , unlike the tree Tree(P), which can have a number of vertices that grows
exponentially with level e.

Theorem 3.1.

= d pF
P(z) =0 (mod p°) <= there exists (r, k) € Trunk(P) such that { ind ;(Eﬂr’n;) ;e)
Thus, to know if = is a root of P modulo p€, it suffices to check a combinatorial condition on
x (modulo a certain p¥). Since these solutions can be numerous, one might want to simply
calculate their number without explicitly listing them all; this will be done in Section [6]

Let us reformulate these results to explain how the solution tree is recovered from the trunk by
adding fans. The fan of a vertex (r,k) up to level h is the set of vertices of €2, issued from
vertex (r, k) up to level h:

Fang(r, k) = {(z,1) € Qp | (r,k) < (z,1) and | < h}
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level h
Fan
level k
v (k) eve
‘¥/ Trunk
FIGURE 4. A fan.
Thus, Theorem [3.1] is reformulated as:
Tree(P) = U Fang (1) (7, k)

(r,k)€Trunk(P)

Since the thickness is always at least 1, we have k < (7, k), and therefore the vertex (r, k) is
indeed an element of Fang,,.x)(7, k). Moreover, if the trunk is a finite tree, then there exists
e > 0 such that the equation P(x) =0 (mod p°) has no integer solutions.

3.2. First example for the main theorem

Let us compute the tree of Example which is already depicted in Figure

Ezample 3.2. Let P(X) = (X2 +3)(X?+3X +9) and p = 3. In the figure below on the left,
we have the trunk of P, which is a tree with only 3 vertices (the computation has been done
in Example 2.2). The vertex (0,1) has a thickness t; = 3 (and thus a tree-top function value
of ¢1 = t; = 3); the vertex (3,2) has a thickness t2 = 1 and thus a tree-top function value of
o = t1 + to = 4. To obtain the solution tree, below on the right: we start from the trunk of P;
to the vertex (0,1) we adjoin the fan originating from this vertex that goes up to level ¢ = 3;
to the vertex (3,2) we adjoin the fan originating from this vertex that goes up to level o = 4.

p
M
Fan above (3,2)
p3
p2 (3,2) Fan above (0,1)
p (0,1)
The trunk of P The tree of P

FIGURE 5. The tree from the trunk.
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From the tree, we read the solutions of the equation P(x) = 0 (mod p€) for different values of
e. The formula from Corollary will allow us to count the number N, of solutions without
explicitly enumerating them.

p° solutions N,

3! 0 1
32 0,3,6 3
3 0,3,6,9,12,15,18,21,24 9
3% 3,12,21,30,39,48,57,66,75 9

For e > 5, the equation has no solutions.

3.3. Second example

We will consider an example in which the congruence P(x) =0 (mod p¢) has solutions for every
e > 1. One situation where this happens is when there is a simple root modulo p, that is
P(z1) =0 (mod p) but P'(x1) # 0 (mod p). Then Hensel’s lemma (see [I] or [7]) shows that
this root can be lifted indefinitely to solutions modulo p?, p3, ..., thereby producing an infinite
branch in the solution tree whose vertices all have thickness 1 (see Lemma .

Theorem 3.3 (Hensel’s Lemma). Let P(z) € Z[x] and 1 € Z be such that P(x1) =0 (mod p)
and P'(z1) £ 0 (mod p). Then, for every integer e > 1, there exists a unique integer x. (deter-
mined modulo p°¢) satisfying P(z.) =0 (mod p¢) and z. = x1 (mod p).

The idea of the proof is a variant of Newton’s method for finding roots. We proceed by induction
on the exponent e. The first step is a Taylor expansion around the known root xi:

P(x1 + hp) = P(z1) + hpP'(z1) (mod p?).
Since p | P(x1), write P(z1) = p- C and let D be an inverse of P/(x1) modulo p. Then set

ho = —%D = —CD. By construction,

P(z1 + hop) = P(21) + hopP'(z1) = pC (1 — DP'(z1)) =0 (mod p?),

SO T9 = 1 + hop is indeed a root modulo p?. From there one continues inductively to lift to all
higher powers of p.

Ezample 3.4. Let P(X) = X(X — 1)2 + 52 and consider p = 5.

600 611 41
100 111 41
0
0

FI1GURE 6. Trunk with infinite branches. All non-marked thicknesses equal 1.
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The root 0 is a simple root of P modulo 5, meaning that P’(0) # 0 (mod 5). By Hensel’s lemma,
this root can be lifted indefinitely to solutions modulo each p®. This results in an infinite branch
of the trunk (on the left in Figure @ At each level of this branch, the thickness is 1, so the part
of the solution tree corresponding to this branch coincides with the branch itself. In summary,
for each level e, there is a unique solution z satisfying x = 0 (mod p) and P(z) =0 (mod p°).

The root 1 is not a simple root; it has thickness 2. After level 1, the trunk splits into two infinite
branches, each of thickness 1. The solution tree can be recovered from the trunk by Theorem

(but is not pictured in Figure [6]).

p®  solution above 0 solutions above 1 Ne
5t 0 1 2
52 0 1,6,11,16,21 6
53 100 11,16, 36,41,61,66,86,91,111,116 11
5 600 41,111,166, 236,291, 361,416,486, 541,611 11

For all e > 5, the number of solutions remains N, = 11.

Remark. There may exist infinite branches with vertices of thickness greater than 1; an example
will be given in Section [§] Such infinite branches correspond to multiple roots of the polynomial
P(X) in the ring Z, of p-adic integers, and are therefore associated with multiple factors in the
decomposition of P(X) into irreducible factors in Z[X]. It is also possible to detect whether a
branch beginning with vertices of thickness greater than 1 will extend to infinity; see [5, Section

3.
4. THICKNESS
In this section, we provide further information and properties about the thickness.

4.1. Characterization by Taylor’s formula

(4) .
t = minval, <PZ,'(T)p’>

Lemma 4.1.

120
And in particular t < d.

We recall that val,(z), the valuation at p of an integer z, is the largest exponent i such that
Py . ; . . (%) . .
p' divides z. For example val,(p') = i. Also, for any r € Z and i > 0, PT(T) is an integer. As

an application of this lemma, ¢t = 1 iff r is a simple root modulo p, i.e. P(r) = 0 (mod p) and
P'(r) 20 (mod p).

Proof. The Taylor formula for P around the root r is written:

P(i)(r)Xi_|_..._|_ w

d
2! d! X

/ P(r) vo
P(r+ X) :P(r)—l—P(r)X—i-TX +-
This gives:
P/l(,r,)

Pl .
P(r+pX) :P(r)+P’(r)pX+Tp2X2+-~-+.7pZX’+~-

Let ¢ be the thickness of P at r and ¢’ = min;>( val, (P@ (T)pi>.

1!
Since p! divides the polynomial P(r+pX), then pt divides all the coefficients %pi of P(r+pX),
thus t < t. Conversely, by Taylor’s formula, pt" divides all the coefficients of P(r 4+ pX), hence
' <t U

Lemma 4.2. The thickness t of P at r is less than or equal to the multiplicity mult(r) of the
root r as a root of the polynomial P € Z/pZ[X).
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We will also prove in Lemma [£.6] that the thickness can only decrease as we ascend the tree.

Proof. To simplify the proof, and without loss of generality, we can assume r = 0. Let us write
P(X) = Y pcicq@iX". Then p' divides P(pX), so p" divides the a;p’ (for 0 < i < d). Thus p
divides a; for i < t, so after reduction modulo p, P(X) = a; Xt +--- + agX® factors through X*.
Thus the multiplicity of » = 0 as a root of P is greater than or equal to . U

4.2. Residual degree

Definition 4.3. Let P € Z[X] of thickness ¢ at r € Z, associated with the decomposition P(r +
pX) = p'Q(X). The residual degree of P at r, denoted s, is the degree of the reduction of Q
in Z/pZ[X]. In other words, s = deg Q.

Lemma 4.4. The residual degree s is at most t, and is the largest integer ¢ > 0 such that

p) A
val,, ( ﬂ(r)pZ) =t

Ezample 4.5. Let P(X) = X3 4+ pX? + pX. The thickness of the root 7 = 0 is ¢ = 2 because
P(pX) = p?Q(X) where Q(X) = pX?3 + pX? + X. The residual degree is s = 1 because the
reduction of () modulo p is of degree 1.

Proof. To simplify the writing of the proof, we can again assume without loss of generality that

r =0 and write P(pX) = p'Q(X). Let P(X) =Y ;g a;X'. By Taylor’s formula, a; = %
By hypothesis p’ divides P(pX), so p’ | a;p® for all 0 < i < d. Thus:
degQ =5 < p'* fasp® and p'* | a;p’ for all i > s

<= valy(asp®) =t and valy(a;p') >t for all i > s

<= s is the largest integer such that valp(aipi) =1
Finally ¢ > s because:

t= Olgigd lvalp (P(;)!(T)> +1| = val, (P(SS)!(T)> + s
[l

4.3. Node rule

Lemma 4.6 (Node rule). Let (r,k) € Trunk(P) with thickness t and residual degree s. Let
(riy k+ 1) € Trunk(P) of thickness t; be the children of (r,k), i=1,...,1. Then:

t1+to+---+{; <5<t

t1 12 4

FIGURE 7. The node rule: t1 +to +--- +¢; < t.

Proof. Let P(r + pX) = p'Q(X). Let 7; = r + p;p¥, i = 1,...,1 where p; are the roots of Q
modulo p. Consider the decomposition of the reduction of @ modulo p according to its roots:

QX) = (X —p)" -+ (X = p)"I(X) € Z/pZ[X]
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where I(X) has no roots modulo p. By Lemma the thickness is less than or equal to the
multiplicity: ¢; < p;. Thus, remembering that deg @ is by definition the residual degree s and
that s < ¢ (Lemma [4.4)):

D<) pi<degQ=s<t

1<i<l 1<i<l

5. CONSTRUCTION OF THE SOLUTION TREE FROM THE TRUNK

Now that we have defined the trunk and explained its main properties, it is time to prove Theorem
which explains how to compute the tree Tree(P) of solutions P(z) = 0 (mod p°) from the
trunk Trunk(P), via the formula:

P(z) =0 (mod p°) <= there exists (r, k) € Trunk(P) such that z = (mod p¥) and ¢(r, k) > e
5.1. Tree-top function

For (r,k) € Trunk(P), let t1,...,t; be the thicknesses associated with the path from the root
to the vertex (r, k). Let ¢ = @(r, k) = t1 + -+ - + t be the value of the tree-top function at this
vertex.

Lemma 5.1. There exists a decomposition
P(r+p"X) = p*Q(X)

where Q(X) € Z[X].
Proof. Let r = ro+7r1p+rop?+---+7r,_1p" ! be the p-adic expansion of 7. Then P(ro+pX) =
p't P1(X) where Py denotes the successor of P for the root rg, hence

P(ro+rip+p°X) = P(ro + p(r1 + pX)) = p"" P (r1 + pX) = p" T P (X)
where P; is the successor of P; for the root r1. By induction, P(r+p*X) = ptT -+t Py (X) with
P(X) € Z[X). O
5.2. Proof of Theorem [3.7]

Let (z,e) € Q,. We want to know if P(z) = 0 (mod p°), that is if (z,e) € Tree(P). Let
(r,k) € Trunk(P) be the most recent ancestor of (z,e) belonging to the trunk of P. We have
x =1+ pFy (where y € Z).

(z,¢)

Trunk

FIGURE 8. The most recent ancestor of (z,e).

Using the notations of Lemma [5.1], we have:

P(r+p"X) = p?"MQ(X)
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where ¢(r, k) is the value of the tree-top function. But additionally, we know that Q(y) # 0
(mod p) because otherwise (r, k) would not be the most recent ancestor of (z,e) belonging to
the trunk.

Thus:

where for the last equivalence we used that Q(y) # 0 (mod p).
Moreover, for a given solution z, such a pair (r, k) is unique if we impose the condition:

SO(T? k) —tp <e<x <P(7”7 k)

where ¢ is the thickness of the vertex (r,k). This means that a vertex (r, k) of the trunk
corresponds uniquely to roots whose level is strictly greater than ¢(r, k) — tx but less than or
equal to ¢(r, k).

6. NUMBER OF SOLUTIONS

We will extract from Theorem a formula that allows us to directly compute the number of
solutions from the trunk.

6.1. Formula

Corollary 6.1. The number of solutions of the equation P(x) =0 (mod p®) in Z/p°Z is:

N, = Z pek.

(r,k)€Trunk(P)
p(rk)—ty <e<p(rk)

Proof. We have seen that the fan originating from the vertex (r, k) of the trunk produces solutions
up to the height ¢(r, k). Let (r—,k — 1) be the direct predecessor of (r, k) (that is, the vertex of
the trunk adjacent to (r, k) on the side of the root). By denoting ¢ as the thickness of (r, k) and
©(r, k) as the tree-top function, we obtain: ¢(r~,k—1) = ¢(r, k) —t. Thus, the vertex (r—,k—1)
produces solutions up to the height ¢(r, k) —t. Therefore the solutions x, whose height e satisfies
o(r, k) —t < e < @(r, k), are uniquely associated with the single element (7, k) of the trunk.

How many solutions does such a vertex (r, k) of the trunk produce? The fan originating from
(r, k) has: 1 vertex at level k, p vertices at level k+ 1, p? vertices at level k+ 2, and so on. Thus,
¢=F solutions. The condition ¢(r,k) —t < e < ¢(r, k) ensures
that this level e is reached by this vertex (r, k) but not by any other vertices of the trunk. O

for a given level e, we associate p

6.2. Example

The formula from Corollary allows us to count the number N, of solutions without explicitly
enumerating them. We return to our favorite example, whose trunk was computed in Example
[2:2] and whose solutions were computed in Example [3.2]

Ezample 6.2. Let P(X) = (X?+3)(X2+3X +9) and p = 3. The vertex (0,1) at level k = 1
of the trunk satisfies ¢; = 3 and ¢t; = 3. It contributes to the solutions modulo p¢ for levels e
satisfying o1 —t1 < e < 1, that is, e = 1,2,3. Thus, N, = p¢F = p¢~1 =31 fore = 1,2, 3.
The vertex (3,2) at level k = 2 of the trunk satisfies 2 = 4 and t2 = 1. It contributes to the
solutions modulo p¢ for levels e satisfying po — to < e < 2, which means only at level e = 4,
and thus Ny = p*~2 = 9. For e > 5, we have N, = 0.
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7. STRUCTURE OF SOLUTIONS

7.1. Algorithmic aspects

This is a well-studied aspect (see references in Section [9.2]). Here we will just explain that
expressing the set of solutions in a compact form is easy, meaning it is done in polynomial
complexity (depending on the degree of the polynomial and the level e; the prime p being fixed),
even though the number of these solutions can exponentially depend on these data.

The main reason this is possible is that the trunk is considerably simpler than the tree, even
though by Theorem [3.1] they are combinatorially equivalent data. Indeed, the number of vertices
of Trunk(P) located at a fixed level is bounded by d (the degree of P). The proof for level k = 1
is simply that the number of roots of P on the field Z/pZ is less than d. This remains true for
any level by induction thanks to the node rule (Lemma .

Let’s outline the algorithm for computing the trunk and the set of solutions of the equation
P(z) =0 (mod p°).

Data. p a prime number; P € Z[X] of degree d; e > 0 an integer.

Goal. Compute all solutions P(z) =0 (mod p°) for xz € Z/p°Z.

Step a. Find solutions modulo p: solve P(z) =0 (mod p) by exhaustive search on 0 < z < p—1.
The polynomial P of degree d on the field Z/pZ has at most d roots (and at most p distinct
roots). Each solution gives a vertex of the trunk.

Step b. Compute the thickness and decomposition P(r + pX) = p'Q(X) for each root r from
the previous step. This is done through a sequence of elementary operations: (i) translation
P(X) — P(a+ X); (ii) substitution P(X) — P(pX); (iii) coefficient valuation. Associate the
thickness with the corresponding vertex of the trunk.

Iteration. Each successor of () from the previous step, once reduced modulo p, has a degree
equal to the residual degree (thus less than or equal to d, see Lemma , and additionally, by
the node rule (Lemma , the total number of vertices for a given level is bounded by d. Thus
each step a or b is repeated at most d - e times.

The algorithms for calculating the trunk, the solution tree, and the formula for the number of
solutions have been implemented via the computer algebra system Sage [11].

7.2. Degrees
Let P € Z[X].

— We denote d as the degree of P in Z[X].

— We denote d), as the degree in Z/pZ[X] of the reduction of P modulo p.

— We denote dryynk as the number of leaves of the trunk Trunk(P); each infinite branch of
the tree counts as a leaf, in addition to the finite leaves.

These quantities allow for a rough estimate of the complexity of the trunk of P.

Lemma 7.1.
dTrunk < dp < d

Proof. The second inequality is obvious. Let’s justify the first. By the node rule, Lemma [4.0]
we prove by induction on K > 1 that d, > Z(r,k)EX(TrunkgK(P)) t(r, k), where X (Trunk<g (P))
denotes the set of leaves of the trunk Trunk(P) truncated at level K. For (r,k) € Trunk(P),
t(r,k) > 1, so dp > dryunk- O

7.3. Solutions

Theorem provides a combinatorial characterization of the solutions of equation P(z) = 0
(mod p°®). Now, we will provide a more arithmetic description of these solutions.
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For z € Z, let |z|, = p~"*»(®) denote the p-adic absolute value and B(r, p~*) the associated
closed ball: B(r,p~*) ={x € Z | In € Z,x = r + np*}. In other words, z € B(r,p~ %) if and
only if p* divides & — r.

The set of descendants of (r, k) in the p-adic congruence tree €2, which is an infinite fan stemming
from (r, k), is thus also the set of (z,e) where z € B(r,p") (and e > k). We will consider
B(r,p~*) N [0,p® — 1] which is the intersection of the fan issued from (r, k) with the level p®.
Fix e > 1, we denote by S, the set of solutions x, with 0 < z < p® — 1, of the equation P(x) =0
(mod p€). In other words, S, corresponds exactly to the set of vertices of the Tree(P) having
exactly level e.

Proposition 7.2. The set of solutions S, is the union of at most dyunk disjoint subsets B(r;, p~*)N
[0,pc — 1].
This proposition appears in |2, Proposition 1| and [5, Proposition 3.
Proof. According to Theorem
S. = U B(r,p~*) N [0,p° —1]

(r,k)€Trunk(P)
(k) =ty <e<p(r,k)

In particular all the solutions x in a ball B(r,p~*) N [0,p¢ — 1] are associated with the same
element (7, k) of the trunk.

The discussion in Section proves that this element (r, k) is unique, i.e. the balls B(r;, p*ki) N
[0,p® — 1] are disjoint. In other words, for a path of the trunk from the root to a leaf (possibly
in the form of an infinite branch) there is at most one element (r, k) in the former decomposition
of S. It implies the bound on the number of balls. O

8. CASE OF DEGREE TWO POLYNOMIALS
Let p > 2 be a prime number. Consider the case of a polynomial of degree 2:
P(X)=aX?*+bX +c€ Z[X]

with p f a. All the configurations begin above the root with a base consisting of a stem of ¢
vertices, each with a thickness of 2 (possibly £ = 0). Above this base, there are 4 possible types.

1

t=1 t=1 :

I

1
t=1 t=1 t=1 t=2
t=2 t=2 t=2 t=2
£>0 t=2 t=2 t=2 t=2

I I I I

1 1 1 1
t=2 t=2 t=2 t=2
Case K Case K; Case K> Case K

FIGURE 9. Possible trunks.

Base.
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Since P is a polynomial of degree 2, the thickness is at most 2, and this is only possible for a
single root; the same holds for its successors. What can happen after a stem with thicknesses
only 27

Cases Ky and K. This base stem of thickness 2 can be infinite; this is the case, for example,
for P(X) = X2. The trunk can also stop just after the last vertex of thickness 2 in the base.
This is, for example, the case for P(X) = (X — 1)% + p?* with p = 3.

Case K5. In the remaining cases each vertex just after the base has a thickness of 1. Let us then
consider the polynomial @) associated with the last vertex of thickness 2. Suppose it has two
simple roots modulo p (that is Q(z;) = 0 (mod p) and Q'(x;) #Z 0 (mod p), i = 1,2). Hensel’s
lemma then allows these two simple roots to be “lifted” indefinitely: for any e > 1, there exists
z; € Z (i = 1,2) such that #; = z; (mod p) and Q(z;) = 0 (mod p®). This is then the K»
situation.

Ezample 8.1. This is the case for P(X) = (X — 1)(X — 2) + p with, for example, p = 5. For
e = 1, the solutions of P(x) =0 (mod p°) are {1,2}. For e = 2, it’s {6,22}, and for e = 3, it’s
{31,97}... In this example the base is empty.

281 347
31 97
6 22

FIGURE 10. The trunk (and the tree) of P(X) = (X —1)(X —2) + 5.

More broadly, the polynomial P(X) = (X — p*)(X — 2p) +p?**! has a trunk, as in the case Ky,
with a base of ¢ vertices and thickness 2.

Case Kj. Let us resume the discussion started in the previous case. It is possible for @ to
have a double root of thickness 1, as in the case of Q(X) = (X — z0)? + p. We then have
Q(xo+pX) = p(pX2 + 1), which indeed gives a thickness of 1, but the successor of Q is pX2+1,
which has no root modulo p. Thus, the trunk ends here in the K; configuration. This is, for
example, the case for P(X) = (X — 1)2 4 p?**! with p = 3.

Ezample 8.2. Let P(X) = (X — 1)? + p° with p = 3. Here are the solutions of the equation
P(x) =0 (mod p°) for different values of e:

p° solutions
3! 1

32 1,4,7
33 1,10,19

3 1,10,19,28,37,46,55, 64,73
35 1,28,55,82,109, 136, 163, 190, 217

For e > 6, the equation has no solutions.
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p 9 solutions
p* 9 solutions
3
p?
p

The trunk of P The tree of P

FIGURE 11. The trunk and the tree of P(X) = (X — 1) + 3°.

9. PERSPECTIVES AND REFERENCES

9.1. Perspectives

Let us conclude by discussing the Poincaré series:

e

u
S(u) = Z NGE)
e=0
where N, denotes the number of solutions to the equation P(z) =0 (mod p®) (with the conven-
tion that Ny = 1). The series S(u) serves as the natural generating function associated with the
number of solutions. In fact, it is a rational function in wu:

Theorem 9.1 (Igusa).
S(u) € Q(u)

We leave it to the reader to prove this result by relying on the structure of the trunk and Corollary
For polynomials in several variables, an analogous result, due to Igusa, remains valid. This
area of research is still very active today [8].

9.2. References

Our problem is masterfully addressed by Schmidt and Stewart in 1997, in the article [9] which
utilizes graph studies and contains, either explicitly or implicitly, all the notions and results of
the present article as well as numerous additional results. It seems that this article did not
receive the widespread attention it deserved.

Fortunately, given its importance, the problem and the solution have resurfaced multiple times,
especially when it comes to finding algorithmic solutions to polynomial problems. Thus, the
explicit construction of the central notion of the present article, that of the “trunk”, is given by
Zuniga-Galindo [12] for a calculation of Igusa’s zeta function. The same construction is found
in the article by Berthomieu, Lecerf, and Quintin [2] for determining the roots of polynomials in
local rings. These same objects and results are taken up by Dwivedi, Mittal, and Saxena [3], [4],
[5], for example, for factorization problems. Finally, Kopp, Randall, Rojas, and Zhu [6] define,
draw, and use the trunk to count the number of solutions without explicitly detailing them.
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Regarding the more elementary notion of the tree of solutions modulo p® of a polynomial, classic

references are [I] or [7].
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