
AROUND THE GCD OF THE VALUES OF TWO POLYNOMIALS

ARNAUD BODIN AND CHRISTIAN DROUIN

Abstract. We propose a mathematical walk around the gcd of the values A(n) and
B(n) of two polynomials evaluated at an integer n. This is an opportunity to use a very
powerful tool: the resultant.

1. Motivation

Two polynomials. Consider the polynomials A(x) = x3 − 5x2 + 10x − 12 and B(x) =

x2+3. For n ∈ Z, let’s note G(n) = gcd(A(n), B(n)), which we write down as A(n)∧B(n).
Here are the values of G(n) for n ranging from 0 to 30:

3 2 1 12 1 2 3 52 1 6 1 4 3 2 1 12 1 2 3 4 13 6 1 4 3 2 1 12 1 2

Even if the first values don’t suggest it, the sequence of G(n) is periodic, but its period
can be very large. Here, the sequence (G(n))n∈Z has period 156, its largest element also
being 156. How can we show that such a period exists, and how can we estimate it? We’re
going to break down the study of the sequence of G(n) into the study of several sequences
of G(n) ∧ p∞ terms. We denote by N ∧ p∞ the greatest power pω dividing N and denote
by νp(N) = ω the valuation of N . The Chinese Remainder Theorem will enable us to
reconstitute the set {G(n)}n∈Z.
Let’s continue with the previous example. Here are the powers of 2 that can be extracted
from G(n) for the first values n = 0, 1, 2, . . . as above:

1 2 1 4 1 2 1 4 1 2 1 4 1 2 1 4 . . .

A periodic pattern [1, 2, 1, 4] of length 4 is clearly visible. This is the same phenomenon
for the prime numbers 3 and 13:

p = 2 m2 = [1, 2, 1, 4]

p = 3 m3 = [3, 1, 1]

p = 13 m13 = [1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1]

For all other primes, G(n) ∧ p = 1. In the general case, we’ll explain how to reconstruct
the values of G(n) from the patterns, and explain what form the patterns can take.

Content of the paper. First, we will use the resultant to prove that the sequence
(G(n))n∈Z is periodic and we will explain how it decomposes into its patterns or basic
components (Theorem 2.5). We will point out strong constraints on these patterns (The-
orem 3.2) and in some situations, provide a direct formula for them; this is the case if
one of the polynomials is of degree one (Section 4) or if the polynomials decompose into a
product of distinct linear factors modulo p (Section 5).
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Only one polynomial. Let’s start with the case of a single polynomial A(x) = adx
d +

· · ·+ a1x+ a0 ∈ Z[x]. Since for every monomial aknk of A(n) we have ak(n+ pα)k ≡ akn
k

(mod pα), then:

Lemma 1.1. Let p be a prime number and α ∈ N. The sequence of terms A(n) ∧ pα is
periodic with a period dividing pα.

It is worth noting that for every non-constant polynomial A(x) ∈ Z[x], there are infinitely
many primes p, such that p divides A(n) for some n ∈ Z (see Schur [10]). Note also that,
when we study A(n) modulo pα, we obtain a function n 7→ A(n) (mod pα) of Z/pαZ in
itself. More generally, for m fixed, there are mm different functions f : Z/mZ → Z/mZ,
but if we count only functions A : Z/mZ → Z/mZ induced by polynomials A ∈ Z[x]
there are far fewer (their number is

∏m
k=0

m
gcd(m,k!) , which can be demonstrated using the

falling factorial, see Bhargava [2]). For example, if m = 4 there are 44 = 256 functions
f : Z/4Z → Z/4Z but only 64 arise from a polynomial. For our problem, we’re interested in
f(n)∧4, which can only take the values 1, 2 or 4. When we count the number of possibilities
for [f(0) ∧ 4, f(1) ∧ 4, f(2) ∧ 4, f(3) ∧ 4], there are in theory 34 = 81 possibilities, but in
fact only 25 come from polynomial functions.
Lemma 1.1 implies that G(n) ∧ pα = A(n) ∧ B(n) ∧ pα is also periodic, with a period
dividing pα. This time, however, the sequence (G(n))n∈Z is periodic. Why is this so?
Thanks to the resultant!

2. Prime factors of the resultant

In this section, we show that the sequence (G(n))n∈Z is periodic and explain how it is
decomposed using patterns. Let A(x) = adx

d+· · ·+a1x+a0 and B(x) = bex
e+· · ·+b1x+b0

be two polynomials with coefficients in a field k, with ad ̸= 0 and be ̸= 0. The resultant
∆ = det(S) ∈ k is the determinant of a (d + e) × (d + e) matrix S, called the Sylvester
matrix :

∆ = det



ad be
... ad

...
. . .

a1
...

. . .
... be

a0 a1 ad b1
...

a0
... b0

...
. . . a1

. . . b1
a0 b0


The first e columns are formed by the coefficients of A(x) (with an offset at each column;
zero coefficients are not indicated), the last d columns are formed by the coefficients of
B(x). The resultant is used to detect whether A(x) and B(x) have a common root. It is
calculated using one of the following formulas:

Theorem 2.1. Let α1, . . . , αd be the roots of A(x) in k̄. Let β1, . . . , βe be the roots of B(x)

in k̄. Then
∆ = aedb

d
e

∏
1⩽i⩽d
1⩽j⩽e

(αi − βj) = aed
∏

1⩽i⩽d

B(αi).

Here k̄ denotes an algebraic closure of k, e.g. if k = R then k̄ = C. For this result, and
the next two, we refer to an algebra book, for example to [8, Ch. 4,§ 8].
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Corollary 2.2. There exists x0 ∈ k̄ such that A(x0) = 0 and B(x0) = 0 if and only if
∆ = 0.

Let’s discuss another property of the resultant in the case of polynomials with integer
coefficients: Bézout’s identity.

Proposition 2.3. For A(x), B(x) ∈ Z[x] coprime polynomials (in Q[x]), there exists
U(x), V (x) ∈ Z[x] such that:

(1) A(x)U(x) +B(x)V (x) = ∆

In addition, we can assume deg(U) < deg(B) and deg(V ) < deg(A).

Such a Bézout’s identity is first obtained on Q. Since A(x) and B(x) are coprime in Q[x],
there exists U0(x), V0(x) ∈ Q[x] such that A(x)U0(x) + B(x)V0(x) = 1. Multiplying by
the denominators of the coefficients of U0(x) and V0(x) gives an equation A(x)U1(x) +

B(x)V1(x) = r, where U1(x), V1(x) ∈ Z[x] and r ∈ Z. We will explain in Section 3 (just
after Proposition 3.4) why the resultant is one of the integers r that can be obtained in
this way.

Corollary 2.4. For all n ∈ Z, G(n)|∆.

Proof. Thanks to this Bézout’s identity, if d|A(n) and d|B(n) then d|∆. □

So the prime numbers p that are factors of G(n) are prime factors of the resultant ∆. Of
course, there are a finite number of such primes. We’ll see that the sequence (G(n)∧p∞)n∈Z
is periodic. The pattern associated with the prime number p is the list of elements of the
sequence forming a minimal period:

mp = [G(0) ∧ p∞, G(1) ∧ p∞, . . . , G(pµ − 1) ∧ p∞]pµ

(The index to the right of the closing bracket indicates the length of the pattern.) For
n ∈ Z, we denote by mp(n) = G(n) ∧ p∞ the n-th term of the pattern extended by
periodicity.
We group the first results in the following theorem.

Theorem 2.5. Let A(x), B(x) ∈ Z[x] be coprime polynomials (in Q[x]). Let G be defined
by G(n) = A(n) ∧B(n), n ∈ Z.

(1) The patterns are well defined: the sequence (G(n)∧ p∞)n∈Z is periodic, of a period
dividing pωp where ωp = νp(∆).

(2) For all n ∈ Z, G(n) =
∏

p|∆mp(n).
(3) The sequence (G(n))n∈Z is periodic, with a period dividing ∆.
(4) {G(n)}n∈Z =

∏
p|∆{mp}

Remarks on each item:

(1) Recall that we noted ωp = νp(∆) as the p-valuation of the resultant, i.e. pωp is the
highest power of p that divides ∆.

(2) The second point simply states that the patterns correspond to the decomposition
into prime factors of G(n).

(3) Here we find a result by Frenkel–Pelikán [5] (see also Frenkel–Zábrádi [6]) and
Bodin–Dèbes–Najib [3].
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(4) Let’s explain how the last point differs from the second. The second point proves
that G(n) is the product of mpi(n), where n is the same integer for each prime
number pi. The fourth point proves that if we take any element mp1(n1) of the
pattern mp1 , any element mp2(n2) of the pattern mp2 , . . . then there exists n ∈ Z
such that G(n) is equal to the product of mpi(ni).

Example 2.6. Let A(x) = (x − 5)(x − 27) and B(x) = x2 + 3x + 9. The resultant is
∆ = 40 131 = 32 × 73 × 13. The patterns associated with the prime factors are:

p = 3 m3 = [9, 1, 1, 3, 1, 1, 3, 1, 1]9
p = 7 m7 = [1, 1, 1, 1, 1, 49, 7, 1, 1, 1, 1, 1, 7, 7, 1, . . .]49
p = 13 m13 = [1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]13

Here are the values of G(n) = A(n) ∧B(n) for n = 0, . . . , 30:

9 13 1 3 1 49 21 1 1 9 1 1 21 7 13 3 1 1 9 7 7 3 1 1 3 1 7 819 1 1 3 . . .

The sequence (G(n))n∈Z is periodic, its period is 5733 = 32 × 72 × 13 (it’s the product of
the pattern lengths). The set of possible values for G(n) is:{

1, 3, 7, 9, 13, 21, 39, 49, 63, 91, 117, 147, 273, 441, 637, 819, 1911, 5733
}
,

which is exactly the product of the pattern values:

{m3} × {m7} × {m13} = {1, 3, 9} × {1, 7, 49} × {1, 13}.
Proof.

(1) Corollary 2.4 proves that G(n)|∆, so νp(G(n)) ⩽ ωp and G(n) ∧ p∞ = G(n) ∧ pωp .
By Lemma 1.1 the sequence (G(n) ∧ pωp)n∈Z is periodic, of minimal period of the
form pµ with µ ⩽ ωp.

(2) Once again, Corollary 2.4 proves that the prime factors of G(n) are the only prime
factors of the resultant.

(3) Since the patterns are periodic and there are only a finite number of prime numbers
p to consider then the period is smaller than the product of the periods, so a divisor
of

∏
p|∆ pωp = ∆.

(4) The point (2) proves inclusion ⊂. For the other inclusion, we need to check that
all products of pattern components are feasible. Let pi be a prime divisor of the
resultant and let mi be an element of the pattern mpi , i = 1, . . . , ℓ. By definition,
there exists ni ∈ Z such that G(ni)∧pωi = mi. By the Chinese Remainder Theorem,
there exists n ∈ Z such that n ≡ ni (mod pωi) for all i = 1, . . . , ℓ. This integer
n verifies G(n) ≡ G(ni) (mod pωi), and since G(n)|∆ it implies G(n) ∧ pωi = mi,
i = 1, . . . , ℓ.

□

3. Constraints on patterns

We will now present strong constraints on the structure of the patterns. In this section
we assume that the polynomials A(x) and B(x) are monic (their dominant coefficient is
1). For each prime number p, we investigate the shape of the associated pattern. Let’s
start with a very common case, which is a slightly more general version of a result by
Frenkel–Pelikán [5, Theorem 6]:

Proposition 3.1. If νp(∆) = 1 then the pattern associated with p is [p, 1, 1, . . . , 1]p (up to
permutation).
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Proposition 3.1 is a consequence of a more general result that imposes many constraints
on the patterns that can be realized.

Theorem 3.2. Let A(x), B(x) ∈ Z[x] be coprime monic polynomials, let ∆ be their resul-
tant and let G be defined by G(n) = A(n)∧B(n), n ∈ Z. If an integer qi divides G(ni) for
i = 1, . . . , ℓ, with ℓ ⩽ deg(A) + deg(B), then q1q2 · · · qℓ divides ∆×

∏
1⩽i<j⩽ℓ(nj − ni). In

particular, if pω1 divides G(n1) and pω2 divides G(n2) then

νp(n2 − n1) ⩾ ω1 + ω2 − νp(∆).

Example 3.3. Consider p = 5 and νp(∆) = 2, then the possible patterns are:
[1]1
[5, 1, 1, 1, 1]5 up to permutation
[5, 5, 1, 1, 1]5 up to permutation
[25, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, . . .]25 up to circular permutation

We leave it to the reader to find monic polynomials that realize these patterns!
Theorem 3.2 shows that the other patterns are not realized. Since ν5(∆) = 2 then the only
elements making up the pattern are 1, 5 or 25. For example, the pattern [25, 1, 1, 1, 1]5 can-
not be realized. Indeed, if 52|G(n1) and 52|G(n2), Theorem 3.2 with ω1 = ω2 = 2 implies
that ν5(n2 − n1) ⩾ 2, hence n2 ≡ n1 (mod 25) and prevents the pattern in question from
being realized. The pattern [25, 5, 1, 1, 1, 5, 5, 1, 1, 1, 5, 5, 1, 1, . . .]25 is similarly excluded by
setting ω1 = 2 and ω2 = 1. More generally 5 consecutive elements never include both 25

and 5.
It’s also easy to show that out of 5 consecutive elements of a pattern, at most two are
divisible by 5. If deg(A) = 1 and deg(B) = 1 then A(x) = x− r0 and B(x) = x− s0 have
at most one common root modulo 5. In the case deg(A) > 1 or deg(B) > 1 and if 5|G(ni),
i = 1, 2, 3, then Theorem 3.2 gives the inequality

ν5
(
(n2 − n1)(n3 − n1)(n3 − n2)

)
⩾ 1,

so ν5(nj − ni) ⩾ 1 for a certain pair (i, j), so for instance n2 ≡ n1 (mod 5). This excludes
patterns [5, 5, 5, 1, 1]5 or [5]1, for example.

Proof of Theorem 3.2. Consider the row vector X = (nd+e−1, . . . , n2, n, 1). Multiply X to
the right of the Sylvester matrix S, then

X × S =
(
ne−1A(n), . . . , nA(n), A(n), nd−1B(n), . . . , nB(n), B(n)

)
Consider the matrix V :

V =



nd+e−1
1 · · · · · · n2

1 n1 1

nd+e−1
2 · · · · · · n2

2 n2 1
...

nd+e−1
l · · · · · · n2

l nl 1

1 0 · · ·
0 1 0 · · ·
· · ·


V is of size (d + e) × (d + e), the first ℓ rows are of the form (nd+e−1

i , . . . , n2
i , ni, 1). The

following rows contain a single 1 and form an identity sub-matrix at bottom left.
– The determinant of V is calculated as a Vandermonde determinant of size ℓ× ℓ:

detV = ±
∏

1⩽i<j⩽ℓ

(nj − ni).
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– By definition detS = ∆.
– The first ℓ rows of V × S, are of the form(

ne−1
i A(ni), . . . , niA(ni), A(ni), n

d−1
i B(ni), . . . , niB(ni), B(ni)

)
as explained above. Thus, if qi divides G(ni), then qi divides A(ni) and B(ni) so qi
divides all the elements in row i of the matrix V ×S, for i = 1, . . . , ℓ. So q1q2 · · · qℓ
is a factor of det(V ×S). This proves that q1q2 · · · qℓ divides ∆×

∏
1⩽i<j⩽ℓ(nj−ni).

□

We need a very useful result by Gomez–Gutierrez [7] (see also the proof of [5, Theorem 6])
which provides an inequality between the degree of the gcd of two polynomials modulo p

and the valuation in p of the resultant of these two polynomials.

Proposition 3.4. Let A(x), B(x) ∈ Z[x] be monic polynomials. Let D(x) be the gcd of
A(x) and B(x) modulo p. Then deg(D) ⩽ νp(∆).

We’re going to describe a simple proof, which will provide an opportunity to present
the resultant via linear maps. Let kn[x] be the vector space of polynomials of degree
⩽ n, and let choose for this vector space of dimension n + 1 the (reverse) canonical basis
(xn, xn−1, . . . , x, 1). Let A(x) ∈ kd[x] and B(x) ∈ ke[x] (not necessarily monic). Consider
the linear map φ defined by:

φ : ke−1[x]× kd−1[x] −→ ke+d−1[x]

(U, V ) 7−→ AU +BV

The matrix of φ associated with the canonical bases is exactly the Sylvester matrix S of the
polynomials A(x) and B(x). If A(x) and B(x) are coprime, then there exist U(x) ∈ ke−1[x]

and V (x) ∈ kd−1[x] such that A(x)U(x)+B(x)V (x) = 1, which implies that φ is surjective,
so by dimensional reasons, bijective, and so in this case ∆ = det(S) ̸= 0. If A(x) and B(x)

are not coprime, then there exists D(x) ∈ k[x] such that A = DA0, B = DB0 with
deg(A0) < deg(A) and deg(B0) < deg(B). The relation AB0 − BA0 = 0, proves that
φ(B0,−A0) = 0, so φ is not injective and in this case ∆ = 0.

We are going to use these considerations of linear algebra to prove Proposition 3.4, but
first we complete our explanations on Proposition 2.3. Let A(x), B(x) ∈ Z[x] be coprime
polynomials (in Q[x]), by Bézout’s identity there exist U0(x), V0(x) ∈ Q[x] such that
A(x)U0(x) + B(x)V0(x) = 1, which implies φ(U0, V0) = 1. So that in terms of matrices
S ×W0 = E, where W0 is the column vector associated with (U0, V0) and E is the column
vector (0, 0, . . . , 0, 1). We now explain how to find polynomials U1(x), V1(x) with integer
coefficients, such that A(x)U1(x) + B(x)V1(x) = ∆ that is to say φ(U1, V1) = ∆. The
inverse S−1 of S can be computed by S−1 = 1

det(S)S
∗ where S∗ denotes the transpose

of the cofactor matrix of S. Then det(S) I = SS∗ (I being the identity matrix) and
det(S)E = SS∗E (E being the column vector (0, 0, . . . , 0, 1)). Let W1 = S∗E, this is a
column vector with integer coefficients. We denote by U1(x) ∈ Z[x] (resp. V1(x) ∈ Z[x])
the polynomial whose coefficients are the e first (resp. d last) components of W1. As
SW1 = ∆E, we get φ(U1, V1) = ∆ so that A(x)U1(x) +B(x)V1(x) = ∆.

Proof of Proposition 3.4. Let D(x) be the gcd of A(x) and B(x) modulo p, i.e. we can write
A(x) ≡ D(x)A0(x) (mod p) and B(x) ≡ D(x)B0(x) (mod p) with A0(x) and B0(x) monic
polynomials, with integer coefficients, with no common factors modulo p. Let ℓ = deg(D) ⩾
1. Let A0(x) = αd−ℓx

d−ℓ+ · · ·+α0, B0(x) = βe−ℓx
e−ℓ+ · · ·+β0. Denote by W0 the vector
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corresponding to the pair of polynomials (B0(x),−A0(x)) ∈ Re−1[x]× Rd−1[x], and more
generally Wi the vector corresponding to the pair of polynomials (xiB0(x),−xiA0(x)) ∈
Re−1[x]× Rd−1[x], for i = 0, . . . , ℓ− 1:

W0 =



0
...
0

βe−ℓ

...
β0
0
...
0

−αd−ℓ

...
−α0


· · · Wℓ−1 =



βe−ℓ

...
β0
0
...
0

−αd−ℓ

...
−α0
0
...
0


Since A(x)B0(x)−B(x)A0(x) ≡ 0 (mod p), then φ(−B0, A0) = SW0 is a vector whose co-
efficients are all divisible by p. And likewise A(x)(xiB0(x))−B(x)(xiA0(x)) ≡ 0 (mod p),
so SWi has all its coefficients divisible by p, for i = 0, . . . , ℓ− 1.
Denote by W the matrix (d+e)×(d+e) whose ℓ first columns are formed by Wℓ−1,Wℓ−2, . . . ,W0,
completed by an identity block at the bottom right (zero coefficients are not indicated):

W =



βe−ℓ

... βe−ℓ

β0

...
. . .

β0 βe−ℓ

. . .
... 1
β0 1

−αd−ℓ

. . .
... −αd−ℓ

. . .

−α0

...
. . . . . .

−α0 −αd−ℓ

. . .
. . .

...
. . .

−α0 1


The first ℓ columns of SW are divisible by p. So pℓ| det(SW ). Since we’re assuming B

and D as monic, then βe−ℓ = 1 and therefore det(W ) = 1. Hence pℓ|det(S) = ∆, so
deg(D) ⩽ νp(∆). □

Proof of Proposition 3.1. By hypothesis νp(∆) = 1, so A(x) and B(x) have a common
factor modulo p, which by Proposition 3.4 is necessarily of degree 1. Thus, there exists
n1 ∈ Z such that A(n1) ≡ 0 (mod p) and B(n1) ≡ 0 (mod p). Thus p|G(n1). By Corollary
2.4, we know that p2 does not divide G(n1). Let n2 be such that p|G(n2) then, by Theorem
3.2 applied with ω = 1, we have νp(n2) − ν(n1) > 0, so n2 ≡ n1 (mod p). Thus, for a
pattern of length p, the term p can appear here only once: mp = [p, 1, . . . , 1]p up to
permutation. □

4. Case of a polynomial of degree 1

Let A(x) = a1x + a0 ∈ Z[x] a degree 1 polynomial (not necessarily monic). First notice
that if A(n) ̸≡ 0 (mod p) for any n ∈ Z, then A(n) ∧ p = 1 and it implies G(n) = 1 for
any n ∈ Z. We first provide an explicit formula in the simple case where the degree of A
is 1, see Drouin [4].
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Proposition 4.1. Let A(x) = a1x+a0 with a0∧a1 = 1. Let B(x) = xe+be−1x
e−1+· · ·+b0

be a monic polynomial, coprime with A(x). Let ω = νp(∆). The pattern mp defined by
A(n) ∧B(n) ∧ pω is the basic pattern [n ∧ pω]pω up to circular permutation.

In cases where a0 ∧ a1 ̸= 1 or B(x) is not monic, the result may not always be so simple,
see [4].

Proof. Let α = −a0
a1

be the root of A(x) = a1x + a0. By the second equality of Theorem
2.1 then

∆ = ae1B

(
−a0
a1

)
So

(2) ∆ = (−a0)
e + be−1a1(−a0)

e−1 + · · ·+ bka
e−k
1 (−a0)

k + · · ·+ b1a
e−1
1 (−a0) + b0a

e
1

Let p be a prime factor of ∆. Let’s prove that p does not divide a1: indeed, if p|a1 then
by (2) we would have p|a0, which contradicts a0 ∧ a1 = 1. So a1 is invertible modulo p

and therefore invertible modulo the powers of p. Let’s denote ω = νp(∆) and a1 ∈ Z an
inverse of a1 modulo pω. Set α̃ = −a0a1. Write an integer n ∈ Z in the form n = α̃+mpk

(with m not divisible by p). On the one hand

A(n) = A(α̃+mpk) ≡ a1(−a0a1 +mpk) + a0 ≡ mpk (mod pω),

so A(n) ∧ pω = pk ∧ pω = pmin(k,ω). On the other hand B(n) = B(α̃ +mpk) ≡ B(−a0a1)

(mod pk). By the integer equation (2), ae1B (−a0a1) ≡ ∆ (mod pω). Since p does not
divide a1 and pω divides ∆ then pω divides B (−a0a1). Thus B(n)∧ pω = pk ∧ pω. Finally
A(n) ∧B(n) ∧ pω = pk ∧ pω, which corresponds exactly to the pattern (n− α̃) ∧ pω. □

5. Case of split polynomials with simple roots modulo p

We provide a direct formula to compute the gcd of A(n) and B(n) in the case of polynomials
that are split into distinct linear factors modulo p. Consider a polynomial A(x) with a
simple root ρ modulo p, i.e.:

A(ρ) ≡ 0 (mod p) and A′(ρ) ̸≡ 0 (mod p)

Hensel’s Lemma allows us to “uplift” this root modulo p2, p3,. . . .

Theorem 5.1 (Hensel’s Lemma). For any ω > 0, there exists r ∈ Z, such that r ≡ ρ

(mod p) and A(r) ≡ 0 (mod pω).

The idea behind the proof is a variation of Newton’s method for root approximation. We
refer to [9, Section 2.6] for details. The proof is done by induction on ω, the first step is
to write a Taylor expansion around the root:

A(ρ+ hp) ≡ A(ρ) + hpA′(ρ) (mod p2).

Denoting A′(ρ) ∈ Z an inverse of A′(ρ) modulo p and setting

h0 = −A(ρ)

p
A′(ρ)

which make sense since p divides A(ρ), then A(ρ+ h0p) ≡ 0 (mod p2). Thus r = ρ+ h0p

is a root modulo p2.

Consider a monic polynomial A(x) that is split and has simple roots modulo p, i.e. A(x) ≡
(x − ρ1)(x − ρ2) · · · (x − ρd) (mod p) where ρi are pairwise distinct modulo p. Then a
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variant of Hensel’s Lemma allows us to factor A(x) modulo any power of p. There exists
r1, . . . , rd ∈ Z such that ri ≡ ρi (mod p) (and therefore ri ̸≡ rj (mod p)) with:

A(x) ≡ (x− r1)(x− r2) · · · (x− rd) (mod pω).

Let B(x) be another split monic polynomial with simple roots modulo p, B(x) ≡ (x −
σ1)(x − σ2) · · · (x − σe) (mod p) and its factorization modulo pω, B(x) ≡ (x − s1)(x −
s2) · · · (x− se) (mod pω). Here’s a direct formula for computing the gcd of the values.

Theorem 5.2. Let A(x), B(x) ∈ Z[x] be monic coprime polynomials, such that both A(x)

and B(x) are split and have simple roots modulo p. Let pω be the largest possible factor
among all the A(n) ∧ B(n). Let n ∈ Z. If there are 1 ⩽ i ⩽ d and 1 ⩽ j ⩽ e such that
n ≡ ri ≡ sj (mod p) then

A(n) ∧B(n) ∧ pω = (n− ri) ∧ (ri − sj) ∧ pω.

Otherwise A(n) ∧B(n) ∧ pω = 1.

Proof. Let’s fix n ∈ Z. For A(n) ∧ B(n) ∧ pω to be different from 1 we need A(n) ≡ 0

(mod p) and B(n) ≡ 0 (mod p), so there exists 1 ⩽ i0 ⩽ d such that n ≡ ri0 (mod p) and
there exists 1 ⩽ j0 ⩽ e such that n ≡ sj0 (mod p). Moreover, such i0 and j0 are unique
because ri are pairwise distinct modulo p and so are the sj . In other words, in the product
A(n) ≡ (n− r1)(n− r2) · · · (n− rd) (mod pω) only the term n− ri0 is divisible by p and in
the product B(n) ≡ (n−s1)(n−s2) · · · (n−se) (mod pω) only the term n−sj0 is divisible
by p. Thus A(n)∧B(n)∧ pω = (n− ri0)∧ (n− sj0)∧ pω, as gcd(a, b) = gcd(a, b− a) then
we also have A(n) ∧B(n) ∧ pω = (n− ri0) ∧ (ri0 − sj0) ∧ pω. □

6. Better than the resultant?

The resultant is not always the smallest integer that satisfies a Bézout identity. For exam-
ple, with A(x) = x2+4 and B(x) = x2−4, the resultant is ∆ = 64, but a smaller integer is
obtained by Bézout’s identity A(x)×1+B(x)×(−1) = 8. We will denote by δ the smallest
positive integer such that there exists U(x), V (x) ∈ Z[x] with A(x)U(x) +B(x)V (x) = δ.
As before, if d|A(n) and d|B(n) then d|δ. So, for any n ∈ Z, G(n) = A(n) ∧B(n) divides
δ. Since the resultant also verifies such a Bézout identity (see Formula (1)) then δ|∆.
Here’s a link between δ and the existence of common roots of A(x) and B(x) modulo
powers of p.

Proposition 6.1. Let A(x), B(x) ∈ Z[x] be monic polynomials, coprime (in Q[x]). Assume
that A(x) and B(x) are split and have simple roots modulo p. Then νp(δ) is the largest
integer µ such that there exists n ∈ Z with A(n) ≡ 0 (mod pµ) and B(n) ≡ 0 (mod pµ).
In particular, νp(δ) is the largest exponent appearing in the pattern mp, which has length
pνp(δ).

Example 6.2. Let A(x) = x2 − 9x+ 16 and B(x) = x2 − 7x+ 12. The resultant is ∆ = 8.
Modulo p = 2, A(x) ≡ x(x − 1) and B(x) ≡ x(x − 1) are split with simple roots. The
common roots modulo 2, are 0 and 1. Modulo 4, the only common root is n0 = 0: A(0) ≡ 0

(mod 4) and B(0) ≡ 0 (mod 4). Modulo 8, A(x) and B(x) no longer have common roots.
So Proposition 6.1 gives us δ = 4.

This result would no longer be valid if A(x) or B(x) had multiple factors. There is a
generalization by Taixés–Wiese [11, Corollary 2.12 (c)] in which the split hypothesis is
no longer necessary, but there must be no multiple factors. Another way of computing
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δ is due to Ayad [1, Exercise 2.13] which we explain briefly: let U(x), V (x) ∈ Z[x] be
Bézout coefficients provided by the extended Euclidean algorithm such that A(x)U(v) +

B(x)V (x) = ∆. Let c(U) be the content of U , i.e. the gcd of the coefficients of U(x), and
c(V ) the content of V (x). Then δ = ∆

gcd(c(U),c(V )) . Thus we obtain a Bézout identity for δ by
starting from a Bézout identity for ∆ and dividing by the gcd of all the coefficients of U and
V . For example, with the polynomials A(x) and B(x) of Example 6.2, with U(x) = 2x−10

and V (x) = −2x+ 14 we obtain Bézout’s identity A(x)U(x) +B(x)V (x) = 8 which gives
the resultant, but as the coefficients of U(x) and V (x) are all divisible by 2, we easily
obtain a Bézout identity giving δ = 4.

Proof of Proposition 6.1. Let µ be the largest integer such that A(n) and B(n) have a
common root modulo pµ. There therefore exists n0 ∈ Z such that A(n0) ≡ 0 (mod pµ)

and B(n0) ≡ 0 (mod pµ). Bézout’s identity A(x)U(x) +B(x)V (x) = δ applied to x = n0

proves that δ ≡ 0 (mod pµ) and therefore νp(δ) ⩾ µ.

By contradiction, assume that νp(δ) > µ. As in Section 5, write A(x) ≡ (x − ρ1)(x −
ρ2) · · · (x− ρd) (mod p) where the ρi are pairwise distinct modulo p. This factorization is
lifted by Hensel’s Lemma modulo pµ+1 to A(x) ≡ (x− r1)(x− r2) · · · (x− rd) (mod pµ+1)

with ri ≡ ρi (mod p). The same applies to B(x) ≡ (x − σ1)(x − σ2) · · · (x − σe) (mod p)

and its factorization modulo pµ+1, B(x) ≡ (x− s1)(x− s2) · · · (x− se) (mod pµ+1).
Bézout’s identity on Z is written A(x)U(x) +B(x)V (x) = δ where we take care to choose
deg(U) < deg(B) and deg(V ) < deg(A). We evaluate this identity at x = ri, as A(ri) ≡ 0

(mod pµ+1) and δ ≡ 0 (mod pµ+1) (because νp(δ) > µ) then B(ri)V (ri) ≡ 0 (mod pµ+1).
But by definition of µ, A(x) and B(x) have no common roots modulo pµ+1, so B(ri) ̸≡ 0

(mod pµ+1) and so V (ri) ≡ 0 (mod p) (in other words pµ+1 divides B(ri)V (ri) but not
B(ri) so p divides V (ri)). This is true for each root ri of A, i = 1, . . . , d and as ri ≡ ρi
(mod p), then V (ρi) ≡ 0 (mod p), i = 1, . . . , d. We found d roots to the polynomial V (x)

of degree < d in the UFD ring Z/pZ[x], so V (x) is the zero polynomial modulo p. Bézout’s
identity modulo p becomes A(x)U(x) ≡ δ (mod p), which is impossible for reasons of
degree in Z/pZ[x].

Let µ = νp(δ) be the largest integer such that A(n) and B(n) have a common root modulo
pµ. For this common root n0, we have A(n0) ∧ B(n0) ∧ p∞ = pµ, and since for any n,
A(n) ∧B(n) divides δ, then pµ is indeed the largest element of the pattern mp.
We now need to prove that the length of the pattern is pµ. First of all, by Lemma 1.1 we
know that this length divides pµ. To simplify the end of the proof, we assume that n0 = 0,
i.e. A(x) ≡ x(x− r2) · · · (x− rd) (mod pµ) with r1 = 0 and ri ̸≡ rj (mod p) (if i ̸= j) and
B(x) ≡ x(x− s2) · · · (x− se) (mod pµ) with s1 = 0 and si ̸≡ sj (mod p) (if i ̸= j). Then
for k = 1, . . . , µ − 1, A(pk) ∧ B(pk) ∧ p∞ = pk ∧ pµ = pk which means that the pattern
must be longer than or equal to pµ. □

Exercise 6.3. Let A(x) = xa + 1 and B(x) = xb + 1. The goal of the exercise is to show
that when A(x) and B(x) are coprime polynomials, the sequence

(
gcd(A(n), B(n))

)
n∈Z is

a periodic sequence with pattern [1, 2].

(1) What is the remainder of the Euclidean division of xa + 1 by x + 1 (in Z[x])?
Discuss according to the parity of a.

(2) Show that gcd(xa−1, xb−1) = xd−1 where d = gcd(a, b). Hint: link an elementary
step of the Euclidean algorithm on polynomials to one step on the integers.

(3) In this question, assume that a and b are coprime.
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(a) What is gcd(x2a − 1, x2b − 1)?
(b) Using Bézout’s identity, show that x+1 belongs to the ideal ⟨A(x), B(x)⟩, i.e.,

there exist U(x), V (x) ∈ Z[x] such that x+ 1 = (xa + 1)U(x) + (xb + 1)V (x).
(c) Show that if a and b are odd, the gcd of A(x) and B(x) is x+ 1.
(d) Show that if a or b is even, A(x) and B(x) are coprime and that 2 belongs to

the ideal ⟨A(x), B(x)⟩.
(e) Deduce that if A(x) and B(x) are coprime, then gcd(A(n), B(n)) is 1 or 2.

Hint: see the beginning of Section 6.
(f) Conclude for the case where a and b are coprime.

(4) Now, do not assume a and b are coprime. Deduce from the previous question that
if A(x) and B(x) are coprime polynomials, then the sequence gcd(A(n), B(n)) is a
periodic sequence with pattern [1, 2].

Perspective

Let’s conclude with examples of polynomials having multiple roots after reduction modulo
p, and therefore for which Hensel’s lemma no longer applies, Proposition 6.1 is no longer
valid, and the role of δ cannot be as direct as in this proposition. Let A(x) = x2 + 27 and
B(x) = x2−18x+108. These are two coprime polynomials with ∆ = 37×7 and δ = 35×7.
The sequence of terms A(n) ∧B(n) ∧ 3∞ is periodic with pattern [27, 1, 1, 9, 1, 1, 9, 1, 1] of
length 9. Contrary to what happens in Proposition 6.1, the power of 3 appearing in δ,
namely 35, is greater than the length 9 of the pattern or its greatest value 27.
To broaden the perspective, polynomials over the ring Z/nZ sometimes exhibit surprising
behavior. For example, A(x) = (x + 1)(x + 7) and B(x) = (x + 3)(x + 5) are coprime
polynomials (with ∆ = 64 and δ = 8). The sequence of terms A(n)∧B(n) is periodic with
pattern [1, 8]. The polynomials A and B are equal modulo 2, with 1 as a double root modulo
2; they are also equal modulo 4. More surprisingly, since (x + 1)(x + 7) ≡ (x + 3)(x + 5)

(mod 8), the polynomials A and B are equal modulo 8. This is possible because Z/8Z[x]
is not a factorial ring. There is still much to discover!

Acknowledgements. We thank the referees for their comments and especially for suggesting
Exercise 6.3.
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